9801
Пошаговое объяснение:
Последняя цифра любого такого числа 1 или 3, в противном случае даже удвоенное "перевернутое" число имело бы на одну цифру больше, чем исходное, а значит, не могло бы быть делителем.
Последняя цифра 3: тогда исходное число это "перевернутое", умноженное на 3 (на 1 и 2 умножать нельзя в соответствии с условием, на 4 и больше - нельзя, так как произведение будет слишком большим). ...3 = 3 * 3...1, других вариантов нет. Тогда исходное число имеет вид 1...3, но такое число слишком мало, 1...3 : 3 имеет меньше цифр, чем исходное число. Значит, чисел вида ...3, удовлетворяющих условию, нет.Последняя цифра 1: так может получиться в случаях 1...7 * 3, 1...3 * 7, 1...9 * 9. Последовательно рассматриваем случаи:Произведение меньше 200... * 3 = 6..., первая цифра не 7, не подходит. Первая цифра произведения 7 или больше, а не 3, не подходит.Пусть так, но уже 11...9 имеет слишком много цифр. Значит, 10...9 * 9 = 9...01. Подбором находим, что на место ... нужно поставить хотя бы 8, меньше не получается.9801
Пошаговое объяснение:
Последняя цифра любого такого числа 1 или 3, в противном случае даже удвоенное "перевернутое" число имело бы на одну цифру больше, чем исходное, а значит, не могло бы быть делителем.
Последняя цифра 3: тогда исходное число это "перевернутое", умноженное на 3 (на 1 и 2 умножать нельзя в соответствии с условием, на 4 и больше - нельзя, так как произведение будет слишком большим). ...3 = 3 * 3...1, других вариантов нет. Тогда исходное число имеет вид 1...3, но такое число слишком мало, 1...3 : 3 имеет меньше цифр, чем исходное число. Значит, чисел вида ...3, удовлетворяющих условию, нет.Последняя цифра 1: так может получиться в случаях 1...7 * 3, 1...3 * 7, 1...9 * 9. Последовательно рассматриваем случаи:Произведение меньше 200... * 3 = 6..., первая цифра не 7, не подходит. Первая цифра произведения 7 или больше, а не 3, не подходит.Пусть так, но уже 11...9 имеет слишком много цифр. Значит, 10...9 * 9 = 9...01. Подбором находим, что на место ... нужно поставить хотя бы 8, меньше не получается.
1) Это задание не имеет однозначного ответа без данных о длине одного из катетов (или их соотношении).
Чем меньше один из катетов, тем меньший получается квадрат
Максимум при равенстве катетов.
2) Сумма равна нулю, так как противоположные члены равны по модулю и имеют разные знаки.
3) Раскроем скобки.
(sinx - cosx)² = 2.
sin²x + cos²x - 2sinx*cosx = 2.
Сумма первых двух членов равна 1.
Тогда - (2sinx*cosx) = 2 - 1. В скобках - это sin(2x).
Получаем sin(2x) = -1.
2х = 2πn - (π/2).
x = πn - (π/4).