М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
усман14
усман14
01.12.2022 14:54 •  Математика

Вычисли 6+9 7+9 8+9 9+9 15-9 16-9 17-9 18-9

👇
Ответ:
Алля111
Алля111
01.12.2022
1)15. 2)16. 3)17 4)18. 5)6. 6)6. 7)8. 8) 9
4,4(71 оценок)
Ответ:

1) 15

2) 16

3) 17

4) 18

5) 6

6) 7

8) 8

9) 9

4,8(74 оценок)
Открыть все ответы
Ответ:
Alexsandar
Alexsandar
01.12.2022
Задачу можно решить методом «научного тыка»

Допустим, в какой-то момент малыш Федя обгоняет Соню на ходулях. Отметим это место специальной меткой, как условное начало круга. Как только он обгоняет Соню, он понимает, что (теперь уже) она – впереди него на расстоянии длины круговой дорожки (фактически она почти впритык позади него, но ведь дорожка круговая (!), а значит, Соня, как бы и впереди на расстоянии длины дорожки).

Пускай теперь до нового места встречи Соня пройдёт от метки какую-то часть круговой дорожки, назовём это «кусок дорожки», а малыш Федя до этого нового места встречи проедет на велосипеде целый круг и ещё такую же часть дорожки, т.е. такой же «кусок», как и Соня.

Новое место встречи, таким образом, сместилось от начальной метки на «кусок дорожки».

После второй встречи, Федя опять обгонит Соню и потом опять встретится с ней уже в третий раз со смещением ещё на один «кусок дорожки» от предыдущего места встречи, которое и так уже было смещено от начальной метки на «кусок дорожки», стало быть, третья встреча сместится от начальной метки на «два куска дорожки».

Второе место встречи сместилось от начальной метки
на «кусок дорожки», а Федя проехал лишний круг.

Третье место встречи сместилось от начальной метки
на «два куска дорожки», а Федя проехал два лишних круга.

Четвёртое место встречи сместится от начальной метки
на «три куска дорожки», а Федя проедет три лишних круга.

Пятое место встречи сместится от начальной метки
на «четыре куска дорожки», а Федя проедет четыре лишних круга.

Заметим, что если бы Соня к пятому месту встречи, смещённому от начальной метки на «четыре куска дорожки бы целый круг, то тогда Федя проехал бы 4 лишних круга и ещё «четыре куска дорожки», т.е. такое же расстояние, как и Соня, а значит ещё один добавочный круг.

И в таком случае, получилось бы, что Соня один круг, а Федя проехал пять кругов, что как раз и сходится с их соотношением скорости. Всё правильно, Федя ведь ездит в 5 раз быстрее, а значит, он и должен проехать в 5 раз больше, чем проходит Соня!

Значит, наше предположение верно. К пятой встрече Соня проходит полный круг, а стало быть, она приходит к начальной метке, которую мы отметили в месте первой встречи, т.е. место пятой встречи совпадает с местом первой встречи. Дальнейшие встречи станут совпадать со встречами в первом цикле рассуждений. Таким образом, всего существует 4 разных места, где Федя обгоняет Соню.

Так же, эту задачу можно решить и «аналитически», через введение неизвестного параметра скорости, и рассмотрения относительной скорости участников, т.е. скорости сближения.

Пусть скорость Сони равна   v .   Тогда скорость Феди равна   5v .   Когда Федя догоняет Соню, их скорость сближения равна   5v - v = 4v   (вычитаем, поскольку Соня уходит от догоняющего её Феди, тем самым, как бы мешая ему себя догонять).

Когда Федя в очередной раз обгоняет Соню, его удалённость от Сони, которую он встретит в будущем, в следующем месте обгона, составляет как раз один круг. За время, пока Федя доедет до нового обгона Сони, Соня пройдет по круговой дорожке в 4 раза меньшее расстояние, поскольку её скорость в 4 раза меньше скорости сближения.

Из этого и следует, что за время между двумя очередными последовательными встречами, которые разделяют участников движения расстоянием в один круг, Соня проходит только четверть круговой дорожки. Значит за 4 дополнительные встречи (после первой начальной) она и пройдёт полный круг. Т.е. всего существует 4 места, в которых малыш Федя обгоняет Соню на ходулях.

О т в е т :  (б)  в 4 точках.
4,8(35 оценок)
Ответ:
далина3
далина3
01.12.2022
При вытаскивании карт рассуждаем в такой модели: вынутые карты кладутся на стол в чётком порядке: первая слева, вторая по центру, третья – справа. Так, наример тройки «Т♦ К♦ 9♥» и «9♥ Т♦ К♦» считаются различными. Т.е., короче говоря, рассматриваем упорядоченные тройки.

All.
Всего варианто вытащить три карты в такой модели поведения:
Первая 36-стью
Вторая 35-тью
Третья – 34-мя

Всего вариантов упорядоченной выборки – 36*35*34.

I.
Вынуть на первое место бубну можно 9-тью
вынуть на второе место бубну можно 8-мью
вынуть НЕ БУБНУ на третье место можно 27-мью НЕ 34!).
Всего с НЕ-БУБНОЙ на третьем месте.

II.
Вынуть на первое место бубну можно 9-тью
вынуть НЕ БУБНУ на второе место можно 27-мью НЕ 34!),
вынуть на третье место бубну можно 8-мью
Всего с НЕ-БУБНОЙ на втором месте.

III.
Вынуть НЕ БУБНУ на первое место можно 27-мью НЕ 34!),
вынуть на второе место бубну можно 9-тью
вынуть на третье место бубну можно 8-мью
Всего с НЕ-БУБНОЙ на втором месте.

0.
Вынуть на первое место бубну можно 9-тью
вынуть на второе место бубну можно 8-тью
вынуть на третье место бубну можно 7-мью
Всего со всеми бубнами.

Всего подходящих вариантов : 9*8*27 + 9*8*27 + 9*8*27 + 9*8*7 = 9*8*(3*27+7) = 9*8*88

*** было бы ошибкой считать во всех трёх случаях I – III не 27, а 34 и не учитывать отдельно ситуацию [0], так как при этом получилось бы выражение 9*8*102, вместо 9*8*88, поскольку в этом случае были бы посчитаны трижды такие упорядоченные тройки, как, например «Т♦ К♦ Д♦» , когда Д♦ выбрана из 34, либо K♦ выбран из 34, либо Т♦, а две остальные только из бубен.

Итоговая вероятность P = \frac{ 9 \cdot 8 \cdot 88 }{ 36 \cdot 35 \cdot 34 } = \frac{ 8 \cdot 88 }{ 4 \cdot 35 \cdot 34 } = \frac{ 88 }{ 35 \cdot 17 } = \frac{88}{595} \approx 14.79 \%



При вытаскивании карт рассуждаем в другой модели: вынутые карты кладутся на стол беспорядочно, т.е. тройки «Т♦ К♦ 9♥» , «9♥ Т♦ К♦» и т.п. считаются неразличимыми. Т.е., короче говоря, рассматриваем неупорядоченные тройки.

All.
Всего варианто вытащить три карты в такой модели поведения:
Первая 36-стью
Вторая 35-тью
Третья – 34-мя
И их можно перемешать внутри тройки 6-тью а значит неразличимых вариантов в 6 раз меньше:

Всего вариантов упорядоченной выборки – 36*35*34/6 = 6*35*34.

ДВЕ БУБНЫ
Вынуть на одно из мест бубну можно 9-тью
вынуть на ещё одно из мест бубну можно 8-мью
причём эти места можно поменять местами, значит выбрать пары бубен можно
К ним можно приложить НЕ БУБНУ 27-мью НЕ 34!).
Всего с одной НЕ-БУБНОЙ на одном из мест мест.

ТРИ БУБНЫ
Вынуть на одно из мест бубну можно 9-тью
вынуть на ещё одно из мест бубну можно 8-тью
вынуть на последнее из мест бубну можно 7-мью
И их можно перемешать внутри тройки 6-тью а значит неразличимых вариантов в 6 раз меньше:
Всего со всеми бубнами.

Всего подходящих вариантов : 9*4*27 + 3*4*7 = 3*4*(3*27+7) = 3*4*88

*** было бы ошибкой смешивать случай с двумя и с тремя бубнами, считая третью карту не одной из 27, а сразу одной из 34, так как при этом получилось бы выражение 3*4*102, вместо 3*4*88, поскольку в этом случае были бы посчитаны трижды такие неупорядоченные тройки, как, например «Т♦ К♦ Д♦», когда Т♦ выбран из 34, либо K♦ выбран из 34, либо Д♦, а две остальные из девяти и восьми.

Итоговая вероятность P = \frac{ 3 \cdot 4 \cdot 88 }{ 6 \cdot 35 \cdot 34 } = \frac{ 4 \cdot 88 }{ 2 \cdot 35 \cdot 34 } = \frac{ 88 }{ 35 \cdot 17 } = \frac{88}{595} \approx 14.79 \% ;

О т в е т: = \frac{88}{595} \approx 14.79 \%
4,8(43 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ