Имеем многочлен 
Корнями многочлена
называют корни уравнения

Имеем уравнение пятого порядка. Попробуем его решить с теоремы Безу.
Суть этой теоремы в том, что если уравнение вида с ненулевым свободным членом имеет некий корень , принадлежащий к множеству целых чисел, то этот корень будет делителем свободного члена.
Выпишем все делители свободного члена: 
Подставим
в корень уравнения и получим:

— неправда
Подставим
в корень уравнения и получим:

— неправда
Подставим
в корень уравнения и получим:

— правда
Следовательно,
— один из корней уравнения. Теперь необходимо выполнить деление многочлена столбиком на
(см. вложение).
После этого исходное уравнение можно записать разложив на множители:

Решаем второе уравнение:









Рациональные корни: 
Имеем многочлен 
Корнями многочлена
называют корни уравнения

Имеем уравнение пятого порядка. Попробуем его решить с теоремы Безу.
Суть этой теоремы в том, что если уравнение вида с ненулевым свободным членом имеет некий корень , принадлежащий к множеству целых чисел, то этот корень будет делителем свободного члена.
Выпишем все делители свободного члена: 
Подставим
в корень уравнения и получим:

— неправда
Подставим
в корень уравнения и получим:

— неправда
Подставим
в корень уравнения и получим:

— правда
Следовательно,
— один из корней уравнения. Теперь необходимо выполнить деление многочлена столбиком на
(см. вложение).
После этого исходное уравнение можно записать разложив на множители:

Решаем второе уравнение:









Рациональные корни: 
Пусть изначально в пруду было 2⁰ * k лилий. На следующий день в пруду стало 2 * k лилий, в следующий за ним - 2² * k лилий. На 12-ый день в пруду станет 2¹¹ * k лилий, которые заполнят весь пруд. На 11-ый день в пруду станет 2¹⁰ * k лилий, то есть вдвое меньше, чем на 12-ый день. Значит, на 11-ый день зарастёт половина пруда.
ответ: на 11-ый день.