Рассмотрим треугольник ABC. В нем провели медианы AE и CD. Так как D - середина AB, E - середина BC, то DE - средняя линия ABC. Треугольники DBE и ABC подобны с коэффициентом подобия 1/2. То есть S_DBE / S_ABC = (1/2)^2=1/4. S_ABC=4*S_DBE, S_ADEC = S_ABC - S_DBE = 3*S_DBE, Отсюда S_ABC = 4/3 * S_ADEC. Рассмотрим четырехугольник ADEC. Это равнобокая трапеция, у которой диагонали равна d=6, а синус угла между диагоналями равен sinα=1/3. Площадь его равна S_ADEC=1/2*d^2*sinα=1/2*6^2*1/3=6. S_ABC=4/3*6=8. ответ: 2)8.
Среди 999 чисел, меньших 1000, 199 чисел кратны 5 : [999 : 5] = 199 . В этом же интервале имеются 142 числа, кратных 7 : [999 : 7] = 142 . Среди 142 чисел, кратных 7, имеются числа, которые делятся также и на 5, то есть кратные 35. Всего таких чисел 28: [999 : 35]= 28 Эти 28 чисел уже учтены в числе 199, найденном ранее. Поэтому количество чисел, меньших 1000, которые делятся либо на 5, либо на 7, равно 199 + 142 - 28 = 313. В рассматриваемом интервале остается 999 - 313 = 686 чисел, которые не делятся ни на 5, ни на 7 * [N] - целая часть числа N . Например, [13,45] = 13. точно не знаю правильно ли это,но вроде бы равильно