y=x^2-5x+6=(x-2)(x-3)
1) найти область определения функции; х∈r y∈r2) исследовать функцию на симметричность и периодичность;
непереодическая, f(x)≠-f(-x) f(x)≠ f(-x)
3)нули функции
х=0 у=0 y=0
у=6 х=2 x=3
4) асимптоты
k=lim(x-5+6/x)= ∞
асимптот нет
5) у`=2x-5=0
x=2.5(точка минимума)
y= 6.25-5*2.5+6=6.25-12.5+6=-0.25
6)у``=2
функция вогнутая на всем интервале.
7)график:
парабола, ветви вверх
вершина в (2.5; -0.25)
сам график:
Пошаговое объяснение:
Для начала найдём, при каких значениях m корни вообще есть. Для этого D≥0.
Решая методом интервалов, получаем: . Это наша ОДЗ.
По теореме Виета
Попробуем подогнать сумму квадратов корней под теорему Виета:
Подставляем:
Это парабола, ветви направлены вверх, значит, её точка минимума находится в её вершине. Если она принадлежит ОДЗ, то это и будет ответом, если нет - то либо 0, либо 0.75 (концы отрезков ОДЗ).
- не подходит. Проверяем концы отрезков:
При m = 0 сумма квадратов корней будет равна 2.
При m = 0.75 сумма квадратов корней будет равна . Подходит первый вариант.
ответ: при m = 0.
Начните с самого простого уровня — сложения однозначных чисел, и доведите его до совершенства: 99% правильных ответов, на каждый ответ 1−2 секунды. Для решения примеров «с переходом через 10» попробуйте использовать следующую технику — «Опора на десяток».
Допустим, вам нужно сложить 8 и 7.
1) Спросите себя, сколько числу 8 не хватает до 10 (это 2).
2) Представьте 7 как сумму 2 и какого-то второго кусочка (это 5).
3) Прибавляйте к 8 сначала ту часть числа 7, которой недоставало до 10, а потом тот второй кусочек — получится 10 и 5, и это, конечно, 15.