Расстояние от посёлка саумалколь до города кокшетау, равное 360 км, машина проехала за 6 ч. преодолеет ли машина это расстояние за 4 ч, если скорость её будет на 30 км/ч больше? уравнением решите
Квадратное уравнение — уравнение вида ax2 + bx + c = 0, где a ≠ 0. Уравнение с вещественными коэффициентами Квадратное уравнение с вещественными коэффициентами a, b, c может иметь от 0 до 2 вещественных корней в зависимости от значения D = b2 – 4ac, называемого дискриминантом квадратного уравнения, поскольку от его значения зависит количество корней уравнения: при D > 0 корней два, и они вычисляются по формулам: x1 = (–b + √D)/2a, x2 = (–b – √D)/2a, где √ означает квадратный корень при D = 0 корень один: x = –b/2a. при D < 0 вещественных корней нет.
Вместо первой пары формул для нахождения корней можно использовать эквивалентные выражения:
x1 = (–k + √(k2 – ac))/a, x2 = (–k + √(k2 – ac))/a, где k = b/2. Это выражение удобно для практических вычислений при четном значении b, т. е. для уравнений вида ax2 + 2kx + c = 0. Уравнение в комплексной области
На множестве комплексных чисел квадратное уравнение с комплексными (в общем случае) коэффициентами всегда имеет два корня, вычисляемые по приведенной выше паре формул. При D = 0 эти корни совпадают и образуют так называемый кратный корень уравнения.
Теорема Виета Сумма корней приведённого квадратного уравнения вида x2 + px + q = 0 равна коэффициенту p, взятому с обратным знаком, а произведение корней равно свободному члену q: x1 + x2 = –p, x1 · x2 = q.
В общем случае (для неприведённого квадратного уравнения ax2 + bx + c = 0): x1 + x2 = –b/a, x1 · x2 = c/a.
Квадратное уравнение — уравнение вида ax2 + bx + c = 0, где a ≠ 0. Уравнение с вещественными коэффициентами Квадратное уравнение с вещественными коэффициентами a, b, c может иметь от 0 до 2 вещественных корней в зависимости от значения D = b2 – 4ac, называемого дискриминантом квадратного уравнения, поскольку от его значения зависит количество корней уравнения: при D > 0 корней два, и они вычисляются по формулам: x1 = (–b + √D)/2a, x2 = (–b – √D)/2a, где √ означает квадратный корень при D = 0 корень один: x = –b/2a. при D < 0 вещественных корней нет.
Вместо первой пары формул для нахождения корней можно использовать эквивалентные выражения:
x1 = (–k + √(k2 – ac))/a, x2 = (–k + √(k2 – ac))/a, где k = b/2. Это выражение удобно для практических вычислений при четном значении b, т. е. для уравнений вида ax2 + 2kx + c = 0. Уравнение в комплексной области
На множестве комплексных чисел квадратное уравнение с комплексными (в общем случае) коэффициентами всегда имеет два корня, вычисляемые по приведенной выше паре формул. При D = 0 эти корни совпадают и образуют так называемый кратный корень уравнения.
Теорема Виета Сумма корней приведённого квадратного уравнения вида x2 + px + q = 0 равна коэффициенту p, взятому с обратным знаком, а произведение корней равно свободному члену q: x1 + x2 = –p, x1 · x2 = q.
В общем случае (для неприведённого квадратного уравнения ax2 + bx + c = 0): x1 + x2 = –b/a, x1 · x2 = c/a.
1) 360/6=60 скорость машины
2)60+30=90 вторая скорость машины
3)360/90=4 второе время
4) 4=4
пусть скорость автомобиля=Х
составляем уравнение:
x*6=(x+30)*4
6x=4x+120
2x=120
x=60
проверка:
(360/60)*6=90*4
360=360 верно
ответ: да