Проверим это правило посчитав определитель второй степени:
Поменяем столбцы местами:
Если брать некоторые абстрактные значения:
Пусть
Поменяем столбцы местами:
Далее можно было бы рассмотреть определитель n*n, но мне кажется, что и эта демонастрация будет весомым подкреплением моего заверения: что при перестановке столбцов знак определителя меняется на противоположный.
Во-первых, очень часто в системе уравнений вообще невозможно посчитать определитель, так как матрица отвечающая системе оказывается не квадратной.
А во-вторых, разумеется, определитель системы поменяет знак, если системе будет отвечать квадратная матрица и вы переставите столбцы.
Главное не путать матрицу элементов и определитель этой матрицы, это разные сущности!
Когда вы переставляете столбцы - вы меняете определитель, а система остается эквивалентной (когда перестановка осуществляется в пределах левой части, или в пределах правой. При переносе столбцов из левой в праву, или из правой в левую, надо домножать столбец на -1).
1м 45 с-100 %
105с-1 м 45с
1)105с÷100%=1,05с-1%
2)1,05×15=15,75с-быстрее Таня
3)105-15,75=89,25с-результат Тани
89,25с=1м 29,25с-или 1 минута 29с