Будем переставлять их всеми возможными число объектов остается неизменными, меняется только их порядок). Получившиеся комбинации называются перестановками, а их число равно
перестановки, формулы комбинаторики
Pn=n!=1⋅2⋅3⋅...⋅(n−1)⋅n
Символ n! называется факториалом и обозначает произведение всех целых чисел от 1 до n. По определению, считают, что 0!=1,1!=1.
Пример всех перестановок из n=3 объектов (различных фигур) - на картинке справа. Согласно формуле, их должно быть ровно P3=3!=1⋅2⋅3=6, так и получается.
С ростом числа объектов количество перестановок очень быстро растет и изображать их наглядно становится затруднительно. Например, число перестановок из 10 предметов - уже 3628800 (больше 3 миллионов!).
Единицы измерения должны быть одинаковые, поэтому минуты переводим в часы 6мин/60=1/10=0,1часа х-скорость плановая 42/х-время по плану
х+10-скорость реальная 42/(х+10)-время реальное (знаменатель увеличился, т.е. время уменьшилось по сравнению с планом) и это время меньше планового на 0,1ч. Т.е. если мы к реальному времени прибавим 0,1,то получим время по плану
42/х=42/(х+10) + 0,1 дальше умножаем право и лево уравнения на х(х+10)
42х(х+10)/х=42х(х+10)/(х+10) + 0,1х(х+10) тут 42х(х+10)/х сокращаются иксы,остается 42(х+10) тут 42х(х+10)/(х+10) сокращаются (х+10),остается 42х Получается 42(х+10)=42х+ 0,1х(х+10) открываем скобки 42х+420=42х+0,1х²+х далее переносим всё в одну сторону и решаем квадратное уравнение 0,1х²+х-420=0 D = 1² - 4·0.1·(-420) = 1 + 168 = 169 x1 = (-1 - √169)/(2·(0.1)) = (-1 - 13)/0.2 = -14/0.2 = -140/2=-70 -не подходит x1 = (-1 + √169)/(2·(0.1)) = (-1 + 13)/0.2 =12/0.2 =120/2=60 км/ч-скорость плановая 60+10=70км/ч-скорость реальная (после переезда)
Пусть имеется n различных объектов.
Будем переставлять их всеми возможными число объектов остается неизменными, меняется только их порядок). Получившиеся комбинации называются перестановками, а их число равно
перестановки, формулы комбинаторики
Pn=n!=1⋅2⋅3⋅...⋅(n−1)⋅n
Символ n! называется факториалом и обозначает произведение всех целых чисел от 1 до n. По определению, считают, что 0!=1,1!=1.
Пример всех перестановок из n=3 объектов (различных фигур) - на картинке справа. Согласно формуле, их должно быть ровно P3=3!=1⋅2⋅3=6, так и получается.
С ростом числа объектов количество перестановок очень быстро растет и изображать их наглядно становится затруднительно. Например, число перестановок из 10 предметов - уже 3628800 (больше 3 миллионов!).