1. Пусть х -куплено арбузов, у - яблок, z - слив. Причём, цена одной сливы 1 копейка, или 0,01 рублей. Тогда,
x + y + z = 100 0,5x + 0,1y + 0,01z = 5
Выразим z из первого уравнения: z = 100 - x - y, и подставим во второе: 0,5x + 0,1y + 0,01*(100 - x - y) = 5 0,5x + 0,1y + 1 - 0,01x - 0,01y = 5 0,49x + 0,09y = 4
А теперь методом подбора, берём икс от 1 до 8, подставляем в последнее уравнение и находим игрек. Если игрек получается не целым, то данный икс не подходим. Всё хорошо получается при х = 1, тогда 0,49*1 + 0,09у = 4 0,09у = 3,51 у = 39
Остаётся подсчитать количество слив: z = 100 - х - у = 100 - 1 -39 = 60 Итак, арбуз - 1; яблок - 39; слив - 60
2. Найдём объём всех бочек: 15+16+18+19+20+31 = 119 Т.к. один купил в двое больше кваса, то вместе они купили 3 части кваса. Первый одну часть, второй - две части, соотношение 1:2. Из этого следует, что при вычитании из общей суммы какого-то объёма, оставшееся число должно делиться на 3. Опять применяем метод перебора, поочерёдно вычитаем из общего объёма объём одной бочки. 119 - 15 = 104 - не делится на 3 119 - 16 = 103 - не делится на 3 119 - 18 = 101 - не делится на 3 119 - 19 = 100 - не делится на 3 119 - 20 = 99 - делится на 3 119 - 31 = 88 - не делится на 3
Итак, лишняя бочка, оставшаяся на складе имеет объём 20 литров. В принципе, всё. ответ получен.
Для проверки попробуем узнать, кто какие бочки купил. Куплено 99 литров. Одна часть от этого составит 33 литра. Значит, первый купил 33 литра, а второй 66 литров (2 части). Смотрим, из каких бочек можно получить 33 литра - это 15 и 18 литров. А три бочки по 16, 19 и 31 литров дают в сумме 66 литров.
Рисунок прилагается
ABCD - нужное сечение
AC = 13см
Т.к. это цилиндр, осевое сечение явл. прямоугольником.
Обозн высоту h, а радиус r; r>h
Sсеч = h*2r
2rh = 60
Из треугольника ACD:
AC^2 = AD^2 + CD^2
169 = 4r^2 + h^2
Получается система:
4r^2 + h^2 = 169
2rh = 60
4r^2 + h^2 = 169
h = 30/r
Из 2 уравнения подставляем значение h в первое
4r^2 + 900/r^2 = 169
домножим на r^2
4r^4 + 900 - 169r^2 = 0
4r^4 - 169r^2 + 900 = 0
r^2 обозн. t
4t^2 - 169t + 900 = 0
D = 28561 - 14400 = 14161 = 119^2
t = (169 +- 119)/8 = 36 или 6,25
t = 36 или t = 6,25
r^2 = 36 или r^2 = 6,25
r = 6 или r = 2,5 (есть варианты и с минусами, но радиус и высота не могут быть отрицательными)
Значения r подставляем в одно из уравнений системы, чтобы найти h. При этом не забываем, что h<r
h = 30/r
r = 6
h = 5
6>5; r>h
удовл.
r = 2,5
h = 12
2,5<12;r<h
не удовл.
Значит r = 6; h = 5
Площадь полной поверхности:
Sполн = Sосн + Sбок = п*r^2 + 2п*r*h = п*6^2 + 2п*6*5 = 36п + 60п = 96п см^2
Объем:
V = Sосн*h = п*r^2*h = п*36*5 = 180п см^3
ответ: 96п см^2 и 180п см^3