Zadanie 4 (Задание 4)
Найдите количество деревьев на n вершинах, в которых степень каждой вершины не больше 2.
n=1 => дерево состоит из одной вершины степени 0.
n>=2 => 1] Вершины степени 0 быть не может (иначе граф несвязный). Значит степень вершин либо 1, либо 2. 2] существует простая цепь, являющаяся подграфом дерева.
Тогда будем достраивать дерево из цепи. Ребро - простая цепь.
Алгоритм:
Изначально есть ребро <u,v>. Степени концов цепи - вершин u и v - равны 1.
Если на данном шаге число вершин в графе равно n - получен один из искомых графов, больше его не изменяем.
Если же число вершин < n, добавляем ребро.
На 1ом шаге мы можем добавить либо ребро <u,a>, либо ребро <a,v>. Без нарушения общности, добавим <u,a>. У нас все еще простая цепь. При этом у концов a и v степень 1, а у всех остальных вершин, здесь это вершина u, - 2, и к ним ребра присоединить уже нельзя. Повторяя подобные операции, будем получать на каждом шаге простую цепь.
На n вершинах можно построить ровно одну простую цепь. А значит и число искомых деревьев равно 1 .
Zadanie 5 (Задание 5)
Покажите, что для графа G=[V,E] с k компонентами связности верно неравенство
Введем обозначения
Разобьем граф на компоненты связности. Для каждой компоненты, очевидно, верно неравенство . Просуммировав неравенства для каждой из k компонент, получим
.
Оценка снизу получена.
Лемма: Граф имеет максимальное число ребер, если он имеет k-1 тривиальную компоненту связности и 1 компоненту, являющуюся полным графом. И действительно. Пусть – компоненты связности,
. Тогда при "переносе" одной вершины из
в
число ребер увеличится на
– а значит такая "конфигурация" неоптимальная, и несколькими преобразованиями сводится к указанной в лемме. А тогда максимальное число ребер в графе равно
Оценка сверху получена.
Zadanie 6 (Задание 6)
Проверьте, являются ли следующие последовательности графическими, обоснуйте ответ
Решение в приложении к ответу
9801
Пошаговое объяснение:
Последняя цифра любого такого числа 1 или 3, в противном случае даже удвоенное "перевернутое" число имело бы на одну цифру больше, чем исходное, а значит, не могло бы быть делителем.
Последняя цифра 3: тогда исходное число это "перевернутое", умноженное на 3 (на 1 и 2 умножать нельзя в соответствии с условием, на 4 и больше - нельзя, так как произведение будет слишком большим). ...3 = 3 * 3...1, других вариантов нет. Тогда исходное число имеет вид 1...3, но такое число слишком мало, 1...3 : 3 имеет меньше цифр, чем исходное число. Значит, чисел вида ...3, удовлетворяющих условию, нет.Последняя цифра 1: так может получиться в случаях 1...7 * 3, 1...3 * 7, 1...9 * 9. Последовательно рассматриваем случаи:Произведение меньше 200... * 3 = 6..., первая цифра не 7, не подходит. Первая цифра произведения 7 или больше, а не 3, не подходит.Пусть так, но уже 11...9 имеет слишком много цифр. Значит, 10...9 * 9 = 9...01. Подбором находим, что на место ... нужно поставить хотя бы 8, меньше не получается.