1 задача, ты совершенно не объяснил что делать. 2 я решу:
Для того что бы найти уравнение касательной к графику функции, нужно:
Найти производную Из полученной производной, делаем уравнение: И это и есть уравнение касательной, а теперь, перейдем к решению:
Найдем производную функции Это простая степенная функция, а в каждой степенной функции, производную находят так: - где а- степень В нашей 3 степени: - вот такая вот производная
Дальше делаем так:
Вначале найдем значение функции f(x)=x^3 в точке :
f(3)= 3^3= 9
И получаем следующее: Ну если упростить, получим: - это и есть касательная в ДАННОЙ точке.
Не со всем правильно я где то решил, но суть та же, а касательная : y=27x-54
Среди 999 чисел, меньших 1000, 199 чисел кратны 5 : [999 : 5] = 199 . В этом же интервале имеются 142 числа, кратных 7 : [999 : 7] = 142 . Среди 142 чисел, кратных 7, имеются числа, которые делятся также и на 5, то есть кратные 35. Всего таких чисел 28: [999 : 35]= 28 Эти 28 чисел уже учтены в числе 199, найденном ранее. Поэтому количество чисел, меньших 1000, которые делятся либо на 5, либо на 7, равно 199 + 142 - 28 = 313. В рассматриваемом интервале остается 999 - 313 = 686 чисел, которые не делятся ни на 5, ни на 7 * [N] - целая часть числа N . Например, [13,45] = 13. точно не знаю правильно ли это,но вроде бы равильно
0,5×0,5=1+1,5
2,5=2,5