Пусть производительность первого рабочего x (1/ч) , второго -- y (1/ч) . Тогда первому рабочему потребуется на выполнение всего задания (1/x) часов, второму -- (1/y) часов. Записываем первое уравнение: (1) 1/y - 1/x = 3. За 4 часа первый рабочий выполнит (4x) задания, второй за 3 часа выполнит (3y) задания. Вместе они выполнят всё задание, т. е. 1. Имеем второе уравнение: (2) 4x + 3y = 1 => y = (1 - 4x)/3 Подставляя в (1), получим 3/(1-4x) - 1/x = 3. Умножаем на x(1-4x): 3x - (1-4x) = 3x(1-4x); 7x -1 = 3x - 12x^2; 12x^2 + 4x - 1 = 0. Нас интересует только положительное значение x, поэтому x = (-2 + sqrt(2^2+12))/12 = (-2+4)/12 = 1/6. Значит, первому рабочему на выполнение всего задания потребуется 1/x = 6 часов.
123480=2³*3²*5*7³=5*7*7*7*8*9 - комбинация минимальной длины нажатий. То есть всего 6 нажатий. Теперь попробую показать, почему так. Отметим сразу, что нажатие на 1 не является оптимальным ходом, так как результат от этого не изменяется, а количество нажатий лишь увеличивается. Чтобы минимизировать число нажать, нужно множители сгруппировать таким образом, чтобы произведение множителей в каждой группе было цифрой, то есть числом от 1 до 9. Числа 5 и 7 группировать ни с чем нельзя, поскольку в произведении с чем-то они будут давать числа, большие 9. Следовательно, множители 5,7,7,7 останутся так, как есть. Теперь надо как-то сгруппировать произведение 2³*3². Очевидно, что в качестве одного числа - цифры это представить нельзя, ибо 2³*3²=72. А вот пример разбиения на 2 множителя очевиден: 2³=8 и 3²=9. Таким образом, исходное число можно разбить на произведение 6-ти цифр: 5*7*7*7*8*9.
Стол - 26,5: Шкаф 60 руб
Пошаговое объяснение:
744/28= 26,5
26,5+33,5=60