Нет, не обязательно
Пошаговое объяснение:
На примере. Возьмём прямоугольник 5 столбцов и 3 строки - 15 квадратиков. После удаления двух столбцов получаем 15 - 2*3 = 9. (квадрат 3 на 3) После прибавление трех строк: 9 + 3*3 = 18 квадратиков. Количество увеличилось.
Повторим. 18 квадратиков - 2 столбца по 6 квадратиков = 18-12 = 6. Получим прямоугольник 1 столбец на 6 строк, 6 квадратиков соответственно
Прибавим три строки - столбец один, значит + 3 квадратика — получили 9 элементов. Количество квадратиков уменьшилось.
lim \ x->0 \ \frac{ln(1+x)}{x}=1lim x−>0 xln(1+x)=1
Перейдем к нашему пределу
\begin{lgathered}x->2 \ \ (3x-5)^{\frac{2x}{x^2-4}} x->2 \ \ e^{\frac{ln(3x-5)*2x}{x^2-4}}end{lgathered}x−>2 (3x−5)x2−42xx−>2 ex2−4ln(3x−5)∗2x
сделаем теперь некую замену x-2=yx−2=y , тогда y->0y−>0 предел примет вид без основания
\begin{lgathered}y->0 \ \frac{ln(3y+1)*2(y+2)}{y^2-4y} y->0 \ \frac{ln(3y+1)*4}{3y(\frac{y}{3}+\frac{4}{3})}= y->0 \ \ 1*\frac{4}{\frac{4}{3}}=3\end{lgathered}y−>0 y2−4yln(3y+1)∗2(y+2)y−>0 3y(3y+34)ln(3y+1)∗4=y−>0 1∗344=3
то есть предел равен e^3e3