М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Шкушвово
Шкушвово
21.08.2020 00:21 •  Математика

Найти число если 38% его равны 76 (двумя

👇
Ответ:
arinamal1
arinamal1
21.08.2020

1) Пропорция:

76 - 38%

х - 100%

х = 76 · 100 : 38 = 200

- - - - - - - - -

2) 76 : 38 = 2 - 1% от числа

2 · 100 = 200 - 100% (целое)

- - - - - - - - -

3) 38% = 38/100 = 19/50

76 : 19/50 = 76 : 19 · 50 = 200

- - - - - - - - -

4) 38% = 38/100 = 0,38

76 : 0,38 = 200

ответ: число 200.
4,6(95 оценок)
Открыть все ответы
Ответ:
vkarant2016l
vkarant2016l
21.08.2020

Биномиальным называют распределение количества «успехов» в последовательности из n независимых случайных экспериментов, таких, что вероятность «успеха» в каждом из них постоянна и равна p.

Иначе говоря, пусть происходит n независимых испытаний, в каждом из которых событие может появится с одной и той же вероятностью p. Тогда случайная величина X - количество испытаний, в которых появилось событие, имеет биномиальное распределение вероятностей.

Она может принимать целые значения от 0 (событие не произошло ни разу) до n (событие произошло во всех испытаниях). Формула для вычисления соответствующих вероятностей - уже известная нам формула Бернулли для схемы повторных независимых испытаний:

P(X=k)=Ckn⋅pk⋅(1−p)n−k,k=0,1,2,...,n.

Для биномиального распределения известны готовые формулы для математического ожидания и дисперсии:

M(X)=np,D(X)=npq,σ(X)=npq−−−√.

Пошаговое объяснение:

4,6(73 оценок)
Ответ:
Rogonova
Rogonova
21.08.2020

Биномиальным называют распределение количества «успехов» в последовательности из n независимых случайных экспериментов, таких, что вероятность «успеха» в каждом из них постоянна и равна p.

Иначе говоря, пусть происходит n независимых испытаний, в каждом из которых событие может появится с одной и той же вероятностью p. Тогда случайная величина X - количество испытаний, в которых появилось событие, имеет биномиальное распределение вероятностей.

Она может принимать целые значения от 0 (событие не произошло ни разу) до n (событие произошло во всех испытаниях). Формула для вычисления соответствующих вероятностей - уже известная нам формула Бернулли для схемы повторных независимых испытаний:

P(X=k)=Ckn⋅pk⋅(1−p)n−k,k=0,1,2,...,n.

Для биномиального распределения известны готовые формулы для математического ожидания и дисперсии:

M(X)=np,D(X)=npq,σ(X)=npq−−−√.

Пошаговое объяснение:

4,7(87 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ