1/5+2/45+715=9+2+21/45=32/45
Сначала приведем к общему знаменателю Это 45.
Потом мы видим, что в числителе взялись 9, 2 и 21. Общий знаменатель 45 мы делим на знаменатель первой дроби 1/5. И как раз таки получаем 9, так и последующие.
Е) 1/12+1/18+1/12= 3+2+3/36=8/36. Теперь нужно сократить=2/9
Г) (1/13+1/14)+12/13.
1 действие в скобке
1/13+1/14=14+13/182=27/182.
2 действие:
27/182+1/12=1+14*12/182=169/182. Сократим и числитель и знаменатель на 13, получим = 13/14.
д) 2/15+1/5+3/10= 2*2+6*1+3*3/30=4+6+9/30=19/30
Начнём вот с какого факта: пусть a>1; положим a=1+α. Тогда an=(1+α)n=1+nα+n(n−1)2α2+⋯, где все остальные члены неотрицательны. Отсюда следует, что экспонента растёт быстрее квадратичной функции (коэффициент при n2 здесь положителен). Понятно, что такая квадратичная функция растёт быстрее линейной.
Это рассуждение доказывает, что limn→∞nan=0 при a>1. То же самое можно записать в виде n=o(an), где n→∞. Отсюда легко распространить утверждение на случай функций вместо последовательностей: limx→+∞xax=0, или x=o(ax) при x→+∞.
Блин слушай я так решала
Пошаговое объяснение:
Из того что дано уголД=30, треугольник АСД прямоугольный, уголСАД=90-30=60, уголВАС=90-уголСАД=90-60=30, ВС- меньшее основание=1/2АС, т.к треугольник АВС прямоугольный катет ВС лежит против угла 30=1/2гипотенузы (АС). может что-то не дописал? треугольник АВД., АС=1/2АД=24/2=12, ВС=1/2АС=12/2=6