Возьмём два наполовину заполненных бидона, их суммарный вес 37 кг, а именно18,500+18,500=37 (кг)Перельём всё молоко в один бидон. Получим полный бидон (35 кг) и пустой бидон. Следовательно, что пустой бидон весит 37-35=2 (кг Предположим, что вес бидона - х кг, тогда вес молока в полном бидоне (35-х) кг, а вес наполовину заполненного бидона масса наполовину заполненного молоком бидона 18,5 кгсогласно этим данным составим и решим уравнение:0,5(35-х)+ х=18,517,5+0,5х=18,5 0,5х=18,5-17,50,5х=1х=1:0,5х=2 (кг) - масса пустого бидона. кг=1 000 г ⇒ 35 кг=35 000 г ⇒ 18кг 500г=18 500 г 18 500+18 500=37 000 (г) или 18 500·2=37 000 (г) или 37 (кг) 37 000-35 000=2 000 (г) или 2 (кг) - масса пустого бидона.ответ : 2 кг весит пустой бидон.
Первое решение. Пусть O – середина отрезка BD. Прямая BD перпендикулярна плоскости AOA1. Следовательно, плоскости BDA1 и AOA1 перпендикулярны. Искомым перпендикуляром, опущенным из точки A на плоскость BDA1, является высота AH прямоугольного треугольника AOA1, в котором AA1 = 1, AO = , OA1 = √6/2. Для площади S этого треугольника имеют место равенства . Откуда находим AH = √3/3
Второе решение. Пусть O – середина отрезка BD. Прямая BD перпендикулярна плоскости AOA1. Следовательно, плоскости BDA1 и AOA1 перпендикулярны. Искомым перпендикуляром, опущенным из точки A на плоскость BDA1, является высота AH прямоугольного треугольника AOA1, в котором AA1 = 1, AO = , OA1 =√6/2 . Треугольники AOA1 иHOA подобны по трем углам. Следовательно, AA1:OA1 = AH:AO. Откуда находим AH = √3/3.
Третье решение. Пусть O – середина отрезка BD. Прямая BD перпендикулярна плоскости AOA1. Следовательно, плоскости BDA1 и AOA1 перпендикулярны. Искомым перпендикуляром, опущенным из точки A на плоскость BDA1, является высота AH прямоугольного треугольника AOA1, в котором AA1 = 1, AO = , OA1 =√6/2 . Откуда sin угла AOA1=√6/3 и, следовательно, AH=AO* sin угла AOH=√3/3
2)64
3)600
Вот так как то