Расстояние между двумя точками — это длина отрезка, что соединяет эти точки.
Для точек М и А - это длина стороны АМ треугольника АСМ.
СМ - перпендикулярен плоскости АВСD, значит перпендикулярен любой прямой, проходящей через его основание С.⇒
∆ АСМ- прямоугольный.
АМ=√(CM²+AC²)
В данной трапеции АВ =24 (- меньшая боковая сторона),
CD=25.
ВD - биссектриса прямого угла.
∠АВD=45°, следовательно, ∠АDB =45°, ∆ АВD- равнобедренный и AD=AB=24
Опустим из С перпендикуляр СН на АD.
Отношение сторон ∆ СНD – из Пифагоровых троек, НD=7( проверьте).
Тогда ВС=24-7=17.
По т.Пифагора АС²=24²+17²=865
АМ=√(735+865)=√1600=40 (ед. длины)
Подробнее - на -
Пошаговое объяснение:
Надо привести к уравнению окружности:
(x - Xo)² + (y - Yo)² = R².
Перепишем данное уравнение. Первая окружность.
x² -10*x + y² + 16*y + 80 = 0
(x² - 2*x*5 + 5²) - 25 + (y² + 2*y*8 + 8²) - 64 + 80 = 0
(x-5)² + (y+8)² = 25+64-80 = 89-80 = 9 = 3²
Радиус - R =3, центр в точке А(5;-8) - первая окружность - ответ.
Вторая окружность.
(x² + 2*x*3 + 3²) - 9 + (y² + 2*y*2 + 2²) - 4 - 12 = 0.
(x+3)² + (y+2)² = 9+4+12 = 25 = 5² = R²
Радиус - R = 5, центр в точке В(-3;-2) - вторая окружность - ответ.
Уравнение прямой АВ
ДАНО: А(5;-8), В(-3;-2) НАЙТИ: Y = k*x + b
1) k = ΔY/ΔX = (Аy-Вy)/(Аx-Вx)=(-8-(-2))/(5-(-3))= -0,75 - коэффициент наклона прямой
2) b=Аy-k*Аx=-8-(-0,75)*5= -4,25- сдвиг по оси ОУ
Уравнение прямой Y(АВ) = -0,75*x - 4,25 - ответ.
Расстояние АВ по теореме Пифагора.
a = Аy-Вy = -8 - (-2) = -6
b = Аx-Вx = 5 - (-3) = 8
c² = a² + b² = 36+64 = 100
c = AB = √100 = 10 - расстояние АВ - ответ.
4 кр.
Всего их 34 шт.
Р1= 4/34= 0,11
Р2= 3/33= 0,09
Р= 0,11*0,09= 0,0099