1) 3,84 2) 1,026 3) 4,2 4) 0,86 4) 0,0217 5) 2,4 6) 0,800 7) 0,088
Пошаговое объяснение:
Так как в графе есть хотя бы одна вершина степени 5, есть хотя бы одна компонента с вершиной данной степени. Рассмотрим её. Кроме вершины степени 5 в этой компоненте не менее 5 вершин. Значит, в компоненте связности с вершиной степени 5 не менее шести вершин. Аналогично, в компоненте связности с вершиной степени 2 не менее трёх вершин. Значит, компонент не более 1 + (18 - 6) : 3 = 5.
Докажем, что любое количество компонент от 1 до 5 быть может. Сперва построим пример для 5 компонент. Пусть в одной компоненте две вершины степени 5 соединены ребром, а остальные вершины - вершины степени 2, присоединённые к обоим. Итого 6 вершин на одну компоненту. Остальные компоненты связности представлены циклами длины 3 из вершин степени 2.
Если требуется от 2 до 4 компонент, "склеим" две компоненты-цикла в одну, увеличив цикл.
Если требуется одна компонента, построим компоненту из шести вершин по примеру выше, а затем вместо ребра, соединяющего вершины степени 5, проложим путь из вершин степени 2.
ответ: От 1 до 5.
(P.S. Но это если граф обыкновенный, а в графе с петлями и кратными рёбрами можно устроить от 1 до 17 компонент.)
Так как в графе есть хотя бы одна вершина степени 5, есть хотя бы одна компонента с вершиной данной степени. Рассмотрим её. Кроме вершины степени 5 в этой компоненте не менее 5 вершин. Значит, в компоненте связности с вершиной степени 5 не менее шести вершин. Аналогично, в компоненте связности с вершиной степени 2 не менее трёх вершин. Значит, компонент не более 1 + (18 - 6) : 3 = 5.
Докажем, что любое количество компонент от 1 до 5 быть может. Сперва построим пример для 5 компонент. Пусть в одной компоненте две вершины степени 5 соединены ребром, а остальные вершины - вершины степени 2, присоединённые к обоим. Итого 6 вершин на одну компоненту. Остальные компоненты связности представлены циклами длины 3 из вершин степени 2.
Если требуется от 2 до 4 компонент, "склеим" две компоненты-цикла в одну, увеличив цикл.
Если требуется одна компонента, построим компоненту из шести вершин по примеру выше, а затем вместо ребра, соединяющего вершины степени 5, проложим путь из вершин степени 2.
ответ: От 1 до 5.
(P.S. Но это если граф обыкновенный, а в графе с петлями и кратными рёбрами можно устроить от 1 до 17 компонент.)
1.14×0.9=1.026
3.5×1.2=4.2
8.6×0.01=0.086
2.17×0.01=0.0217
24×0.1=2.4
800×0.001=0.8
0.8×0.11=0.088