Каким образом можно представить закон распределения непрерывной случайной величины, т.е. величины, которая может принимать любые значения на некотором промежутке числовой оси, и число ее возможных значений всегда бесконечно?
Для непрерывной случайной величины вероятность того, что она примет какое-то одно определенное значение, всегда равна нулю. Но можно определить вероятность того, что эта величина примет значение из некоторого промежутка.
Для этого можно использовать функцию плотности распределения вероятностиf(x) (ее еще называютплотностью вероятностиилиплотностью распределения).
Вероятность того, что непрерывная случайная величина х примет значение из некоторого промежутка [a;b], определяют по формуле:
Пошаговое объяснение:
Если при пересечении двух прямых секущей:
накрест лежащие углы равны, илисоответственные углы равны, илисумма односторонних углов равна 180°, топрямые параллельны (рис.1).
Доказательство. Ограничимся доказательством случая 1.
Пусть при пересечении прямых а и b секущей АВ накрест лежащие углы равны. Например, ∠ 4 = ∠ 6. Докажем, что а || b.
Предположим, что прямые а и b не параллельны. Тогда они пересекаются в некоторой точке М и, следовательно, один из углов 4 или 6 будет внешним углом треугольника АВМ. Пусть для определенности ∠ 4 — внешний угол треугольника АВМ, а ∠ 6 — внутренний. Из теоремы о внешнем угле треугольника следует, что ∠ 4 больше ∠ 6, а это противоречит условию, значит, прямые а и 6 не могут пересекаться, поэтому они параллельны.
997;_998;_999;_1000;_1001;_1002;_1003.
Пошаговое объяснение:
7 чисел должны быть записаны 25 цифрами.
Если мы возьмём двухзначные числа, то 7*2=14 цифр будет - не подходит
Если мы возьмём трехзначные числа, то 7*3=21 цифр будет - не подходит
Если мы возьмём четырехзначные числа, то 7*4=28 цифр будет - не подходит
Вывод: часть натуральных чисел трехзначные, а часть четырехзначные
Подберём числа:
997;_998;_999;_1000;_1001;_1002;_1003.
Всего 7 натуральных последовательных чисел
3*3+4*4=25 цифр