Пусть f(x) дважды дифференцируемая по x, принадлежащему множеству D. Если в точке x* выполняется условие:
f'0(x*) = 0
f''0(x*) > 0
то точка x* является точкой локального (глобального) минимума функции.
Если в точке x* выполняется условие:
f'0(x*) = 0
f''0(x*) < 0
то точка x* - локальный (глобальный) максимум.
Решение.
Находим первую производную функции:
y' = -2·sin(2·x)
Приравниваем ее к нулю:
-2·sin(2·x) = 0
x1 = 0
Вычисляем значения функции
f(0) = 1
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = -4·cos(2·x)
Вычисляем:
y''(0) = -4<0 - значит точка x = 0 точка максимума функции.
Пошаговое объяснение:
1) y'=3x^2+4x-4, y'=0, 3x^2+4x-4=0, D=64, x=-2 и x=2/3-не принадл-т
[-2;0], находим значение функции в точках -2, и 0,
y(-2)=-8+2*4-4*(-2)+4=-8+8+8+4=12(наиб)
y(0)=0+0-0+4=4 (наим), ответ: 12
2) y'=15-cosx>0, т.к. |cosx|<<1, производная >0, значит функция
возрастает и наименьшее в левом конце отрезка, т.е. в точке 0,
y(0)=15*0-sin0+8=8, ответ 8
3) y'=4-1/cos^2x=(4cos^2x-1)/cos^2x, cosx не =0, y'=0,
4cos^2x-1=0, cos^2x=1/4, cosx=1/2 или cosx=-1/2,
x=+-p/3+2pn, x=+-2p/3+2pn, это критические точки и надо
посмотреть, какие из них принадлежат отрезку
Т.к.
54*3=162 ящика,
46*3=138 ящиков.
162ящ.с зимн.ябл. - 138 ящ.с осен.ябл. = на 24 ящ. Сняли больше с зимн. Ябл.