1. б) (x-5)²+y²=9
2. г) y=x т.к. у(-х)=-х=-у(х) только у этой функции из предложенных. косинус четная, логарифм, только для положительны х ≠1 определен,
а y=3^x не является ни четной. НИ НЕЧЕТНОй. т.к. у(-х)≠у(х), у(-х)≠-у(х),
3. Производная тангенса равна 1/сos²x, а в указанной точке, это значение равно двум, т.к. сos(π/4)=1/√2
4. Желтых пять, т.к. общее число исходов равно 12, Ваш знаменатель, а число благоприятствующих исходов равно пяти. все подходит для применения классич. определения вероятности.
1. Векторы коллинеарны, если их координаты пропорциональны, т.е.
n/2=3/(-1)⇒n=-6, верный ответ г)
2. m/2=3/n⇒m*n=6⇒m=6/n, верный ответ а)
3. π/π=1, т.к. наименьший положит. период у функции f(x)= tg(x) равен π
4. Функция убывает при условии, что ее производная меньше или равна нулю.
Производная равна 6х+6, 6х+6=0, стационарная точка х=-1, выясним, при каких х производная меньше или равна нулю, решив неравенство 6х+6≥0
-1
- +
ответ х∈(-∞; -1]
можно проще.
это квадратичная функция, абсцисса вершины равна -6/2*3=-1, поэтому убывает при х∈(-∞; -1]