М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
dimazhulin1609
dimazhulin1609
15.06.2020 17:11 •  Математика

Деревянный куб покрасили краской со всех сторон, а затем распилили на маленькие кубики. найдите число кубиков окрашенных только с одной стороны. измерения в большом кубе а=b=c=4

👇
Ответ:
Ijorik
Ijorik
15.06.2020

ответ: 24

Пошаговое объяснение: смотря на сколько частей распилили. Если на 27 кубиков, то 4. Если 64, то 24. А, увидел, кубик распилили на 64 части! Просто вопрос не дочитал.

4,4(14 оценок)
Открыть все ответы
Ответ:
DenisKazansev
DenisKazansev
15.06.2020

1) 30 см; 6,15 см²

2) 112 мм; 959 мм²

Пошаговое объяснение:

1) Периметр - это сумма сторон. Поэтому он равен 6 · 5 = 30 (см)

Площадь правильного пятиугольника равна сумме площадей равных треугольников, из которых он состоит. Площадь треугольника равна 1/2 · 6 · 0,41 см = 1,23 (см²) Значит, площадь пятиугольника равна

1,23 · 5 = 6,15 (см²)

2) Периметр восьмиугольника: 14 · 8 = 112 (мм)

Площадь его равна сумме площадей равных правильных треугольников, из которых он состоит (их восемь)

Площадь треугольника: 1/2 · 14 · 17 = 119 (мм²)

Площадь восьмиугольника: 119 · 8 = 952 (мм²)

4,8(40 оценок)
Ответ:
MisteryHack0
MisteryHack0
15.06.2020

y=arctgx +Ce^{-arctgx}-1

Пошаговое объяснение:

(1+x^2)y'+y=arctgx

Разделим всё уравнение на 1+х², (1+x²>0)

y'+\frac{y}{1+x^2} =\frac{arctgx}{1+x^2}

Это уравнение первого порядка называется линейным, так как оно имеет вид: y'+P(x)y=Q(x), где P(x)=1/(1+x²); Q(x)=arctgx/(1+x²)

Его можно решать, например, методом Бернулли:

Сделаем подстановку: y=uv; y'=u'v+uv'

подставим в уравнение:

u'v+uv'+\frac{uv}{1+x^2}=\frac{arctgx}{1+x^2}

Далее выносим из 2-го и 3-го слагаемых общий множитель u за скобки (так делается всегда)

u'v+u\left(v'+\frac{v}{1+x^2}\right)=\frac{arctgx}{1+x^2} \ \ (*)

то что получилось в скобках приравниваем к нулю:

v'+\frac{v}{1+x^2}=0

Полученное уравнение является ДУ с разделяющимися переменными. Нам нужно найти его какое нибудь одно частное решение. Самое простое - это при решении опустить константу С (то есть принять С=0)

v'+\frac{v}{1+x^2}=0 \ \Rightarrow \ \frac{dv}{dx}=-\frac{v}{1+x^2} \ \ |\cdot \frac{dx}{v} , \ v \neq 0 \ \Rightarrow \ \frac{dv}{v}=-\frac{dx}{1+x^2} \ \Rightarrow \\ \\ \Rightarrow \ \int\frac{dv}{v}=-\int\frac{dx}{1+x^2} \ \Rightarrow \ \ln|v|=-arctgx \ \Rightarrow \ v=e^{-arctgx}

Подставляем найденное v в уравнение (*) и так же не забываем, что результат в скобках равен нулю:

u'e^{-arctgx}+u \cdot 0=\frac{arctgx}{1+x^2} \ \Rightarrow \ \frac{du}{dx} e^{-arctgx}=\frac{arctgx}{1+x^2} \ \ |\cdot e^{arctgx}dx \ \Rightarrow \\ \\ \Rightarrow \ du=e^{arctgx} \cdot \frac{arctgx}{1+x^2} dx \ \Rightarrow \ \int du=\int arctgx\cdot \frac{e^{arctgx}}{1+x^2} dx \ \Rightarrow \ \\ \\\Rightarrow \ u=\int arctgx\cdot \frac{e^{arctgx}}{1+x^2} dx \ \Rightarrow \ (**)

полученный интеграл берем по частям: где U=arctgx и dV=e^(arctgx)/(1+x^2)dx

Поэтому прежде стоит найтиdV=\frac{e^{arctgx}}{1+x^2}dx \ \Rightarrow \ V=\int\frac{e^{arctgx}}{1+x^2}dx=\begin{vmatrix} arctgx=t \\ dt=\frac{dx}{1+x^2} \end{vmatrix} =\int e^t dt=e^t+C =\\ \\ = |t=arctgx|=e^{arctgx}+C V

Теперь возвращаемся к решению (**)

u=\int arctgx\cdot \frac{e^{arctgx}}{1+x^2} =\begin{vmatrix}U=arctgx; \ dV=\frac{e^{arctgx}}{1+x^2}dx \\dU=\frac{dx}{1+x^2}; \ V=e^{arctgx} \end{vmatrix}=arctgx \cdot e^{arctgx}- \\ \\ -\int \frac{e^{arctgx}}{1+x^2}dx=arctgx \cdot e^{arctgx}- e^{arctgx}+C

Осталось сделать обратную замену:

y=uv=(arctgx \cdot e^{arctgx}-e^{arctgx}+C)\cdot e^{-arctgx}=\\ \\ =arctgx -1+Ce^{-arctgx}

И на последнем шаге нужно выяснить, есть ли у данного ДУ особые решения.

Если внимательно посмотреть на ход решения, то можно заметить следующее:

когда мы решали уравнение

\frac{dv}{dx}=-\frac{v}{1+x^2} \ \ |\cdot \frac{dx}{v} , \ v \neq 0

все последующие действия были с учетом того, что v≠0.

Осталось проверить, будет ли начальное ДУ иметь решение, если v=0?

y=uv=u\cdot 0=0 \\ \\ y=0 \ \Rightarrow \ y'=0 \\ \\ (1+x^2)y'+y=arctgx \\ \\ (1+x^2)\cdot 0+0=arctgx \\ \\ 0=arctgx

Последнее равенство не является тождеством! (то есть равенство не выполняется для любых иксов, а только для конкретных). Значит особых решений нет.

4,4(5 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ