Докажем это. Помним, что: an = a1 + d(n - 1) - формула n-го члена арифметической прогрессии. Из этой формулы видно, что любой член, кроме первого кратен d разности арифметической прогрессии) В то же время: d = (am - an) / (m - n) - разность нахождения арифметической прогрессии.
1) Находим d для нашей задачи: d = (29 - 5) / (3 - 1) d = 24/2 d = 12 2) Вычтем первый член нашей прогрессии из любого числа из предлагаемого диапазона, например, из первого: 2140 - 5 = 2135 3) Разделим 2135 на d=12 2135 : 12 = 177,9166666(7) Это значит, что 177 член прогрессии меньше, чем искомое число. 3) Умножим 12 на 178, чтобы найти ближайшее следующее число, которое кратно разности d=12 178 • 12 = 2136 4) Прибавим к найденному кратному 12 числу первый член прогрессии. 2136 + 5 = 2141 - вот число из предлагаемого диапазона, являющееся членом геометрической прогрессии.
Обозначим первую сторону треугольника как x, вторую сторону как y, третью сторону как z. По условию: x + y = 18,5; y + z = 15,8; x + z = 17,7. Решим получившуюся систему линейных уравнений. В первом уравнении системы выразим x через y: x = 18,5 - y. Во втором уравнении системы выразим z через y: z = 15,8 - y. Выражение x и z подставим в третье уравнение системы: 18,5 - y + 15,8 - y = 17,7. Решим линейное уравнение с одной неизвестной: - 2y = 17,7 - 34,3; - 2y = - 16,6; y = (- 16,6) / (- 2) (по пропорции); y = 8,3 см. Найдем длину стороны x: x = 18,5 - y = 18,5 - 8,3 = 10,2 (см). Найдем длину стороны z: z = 15,8 - y = 15,8 - 8,3 = 7,5 (см). Периметр многоугольника — это сумма длин всех его сторон. Тогда периметр треугольника равен: P = x + y + z. Найдем периметр треугольника, данного по условию: P = 10,2 + 8,3 + 7,5 = 26 (см). ответ: P = 26 см.
Докажем это.
Помним, что:
an = a1 + d(n - 1) - формула n-го члена арифметической прогрессии.
Из этой формулы видно, что любой член, кроме первого кратен d разности арифметической прогрессии)
В то же время:
d = (am - an) / (m - n) - разность нахождения арифметической прогрессии.
1) Находим d для нашей задачи:
d = (29 - 5) / (3 - 1)
d = 24/2
d = 12
2) Вычтем первый член нашей прогрессии из любого числа из предлагаемого диапазона, например, из первого:
2140 - 5 = 2135
3) Разделим 2135 на d=12
2135 : 12 = 177,9166666(7)
Это значит, что 177 член прогрессии меньше, чем искомое число.
3) Умножим 12 на 178, чтобы найти ближайшее следующее число, которое кратно разности d=12
178 • 12 = 2136
4) Прибавим к найденному кратному 12 числу первый член прогрессии.
2136 + 5 = 2141 - вот число из предлагаемого диапазона, являющееся членом геометрической прогрессии.