М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
yvtcrvt
yvtcrvt
27.08.2022 22:04 •  Математика

Округлите данные и найдите приближенно 19%от 123 , 52 % от 698 руб, 26%от 810 метров, 21%от1999 руб,78%от 4009км,9%от208кг

👇
Ответ:
mrnazar228
mrnazar228
27.08.2022

19*123/100=23

52*698/100= 363руб

26*810/100= 211 метров

21*1999/100= 420 руб

78*4009/100=3127км

9*208/100=19 кг

4,6(61 оценок)
Ответ:
slava02555
slava02555
27.08.2022

ответ: 19%от 123=123*0,19=23,37,

52 % от 698 руб=698*0,52=362,96 рублей=362 рубля и 96 копеек,

26%от 810 метров=810*0,26=210,6 метра=210 метров 60 см.,

21%от1999 руб=1999*0,21=419,79 рублей =491 рубль 79 копеек,

78%от 4009км=4009*0,78=3127 рублей 2 копейки,

9%от208кг=208*0,09=18 килограмм 720 грамм.

Пошаговое объяснение:

4,5(97 оценок)
Открыть все ответы
Ответ:
Dimo558
Dimo558
27.08.2022

Вероятность того, что наступит либо a, либо b, равна 0,6 - сложение вероятностей наступления событий а, b:

(1) Pa+Pb=0,6

Вероятность того, что наступит либо a, либо c, равна 0,8, аналогично:

(2) Pa)+Pс=0,8

Так как вероятно только три три элементарных события a, b и c в опыте, то вероятность наступления события либо a, либо b, либо с - "вся вероятность" P равна 1:

P=1

P=Pa+Pb+Pc

(3) Pa+Pb+Pc=1

Составим и решим систему уравнений (1), (2), (3):

{Pa+Pb=0,6

{Pa+Pс=0,8

{Pa+Pb+Pc=1

{Pb=0,6-Pa

{Pc=0,8-Pa

{Pa+(0,6-Pa)+(0,8-Pa)=1

-Pa+1,4=1

Pa=0,4

Pb=0,6-Pa=0,6-0,4=0,2

Pc=0,8-Pa=0,8-0,4=0,4

Проверка:

Pa+Pb+Pc=0,4+0,2+0,4=1=P - решено верно.

ответ: вероятность события a 0,4; вероятность с-тия b 0,2; вероятность события c 0,4.

4,4(69 оценок)
Ответ:
ответ:1) Самая красивая формула в математике или Формула Эйлера

Доказал ее великий Леонард Эйлер. Это формула

e^i^\pi+1=0

"е" в степени произведения "и" на "пи" плюс один равно 0

Здесь есть все важные области математики:

"пи" из геометрии

"и" из алгебры

"е" из математического анализа

единица из арифметики

2) Формула Герона

Формула для вычисления площади треугольника со сторонами а, b и с

\sqrt{p(p-a)(p-b)(p-c)} где p=\dfrac{a+b+c}2 так называемый "полупериметр"

Корень из произведения полупериметра на разность полупериметра и первой стороны на разность полупериметра и второй стороны на разность полупериметра и третьей стороны

3) Формула Кардано

Математики очень долго пытались найти решение уравнений третьей степени, и Кардано смог найти такое

Решение уравнения y^3+py+q=0

y_1=a+b\\y_2_,_3=-\dfrac{a+b}2\pm i\dfrac{a-b}2\sqrt3

где

a=\sqrt[3]{-\dfrac q2+Q}\\b=\sqrt[3]{-\dfrac q2-Q}

А Q в свою очередь равно

Q=\Bigg(\dfrac p3\Bigg)^3+\Bigg(\dfrac q2\Bigg)^2

Корни многочлена 3 степени относительно х при старшем коэффициенте 1  и коэффициенте при х² 0 выражаются либо суммой а и б, или суммой или разности  их полусуммы со знаком минус и их полуразности, умноженной на корень из минус трех, сами же эти числа равны кубическому корню из отрицательной половины свободного члена плюс или минус некоторое число Q, которое равно сумме куба трети коэффициента перед первой степенью и квадрата половины свободного члена

4) Бином Ньютона

Простая формула для раскрытия скобок (a+b)^n при натуральных n

(a+b)^n=\displaystyle\sum\limits^n_{k=0}C^k_na^nb^{n-k}

Сумма степеней а от n до 0 умноженные на степень b от 0 до n умноженные на число сочетаний из n по текущий член многочлена

5) Основная теорема арифметики

Любое натуральное число больше 1 можно разложить в произведение степеней простых чисел единственным образом с точностью до перестановки множителей

6) Основное Тригонометрическое Тождество (ОТТ)

Эту формулу все знают со школы:

\sin^2 a+\cos^2a=1

Сумма квадратов синуса и косинуса одного аргумента равна 1

7) Формула Эйлера для любого плоского графа

V-E+F-2=0

Число вершин в любом графе минус число ребер в этом же графе плюс число граней в этом же графе равно 2 для любого графа

8) Первый замечательный предел

\displaystyle \lim_{x\to0} \dfrac{\sin x}x=1

Отношение синуса к его аргументу при аргументе стремящимся к 0 равно 1 для любого аргумента

9) Второй замечательный предел

\displaystyle \lim_{x \to 0} \Bigg(1+x\Bigg)^{\dfrac1x}=e\\\lim_{x \to \infty} \Bigg(1+\dfrac1x\Bigg)^{x}=e

сумма 1 и х в степени обратной х при х стремящимся к 0 равно е

сумма 1 и обратной х в степени х при х стремящимся к бесконечности равно е

10) Разложение числа пи в ряд

\pi=4\displaystyle\sum\limits^\infty_{k=1}\dfrac{(-1)^{k-1}}{2k-1}=4-\dfrac43+\dfrac45-\dfrac47+\dfrac49-\dfrac4{11}+...

Пи равно учетверенной знакочередующейся сумме чисел обратных нечетным

4,6(5 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ