Пошаговое объяснение:
1) у = 3х + 1.
1. D(y) = R - симметрична относительно 0.
2. у (-х) = 3•(-х) + 1 = -3х + 1.
у (-х) ≠ у(х),
у (-х) ≠ - у(х),
у = 3х + 1 не является ни чётной, ни нечётной. у = 3х + 1 - функция общего вида.
2) у = -2х + 3.
1. D(y) = R - симметрична относительно 0.
2. у (-х) = -2•(-х) + 3 = 2х + 3.
у (-х) ≠ у(х),
у (-х) ≠ - у(х),
у = -2х + 3 не является ни чётной, ни нечётной. у = -2х + 3 - функция общего вида.
3) у = х^2 - 2.
1. D(y) = R - симметрична относительно 0.
2. у (-х) = (-х)^2 - 2 = х^2 - 2 = у(х),
по определению функция является чётной.
4) у = -2х^2 - 1.
1. D(y) = R - симметрична относительно 0.
2. у (-х) = -2•(-х)^2 - 1 = -2х^2 - 1 = у(х),
по определению функция является чётной.
5) у = 1/х.
D: x ≠ 0,
D = (- ∞; 0)∪(0; +∞ ) - симметрична относительно 0.
у(-х) = 1/(-х) = - 1/х = - у(х),
по определению функция является нечётной.
1) у = 3х + 1.
1. D(y) = R - симметрична относительно 0.
2. у (-х) = 3•(-х) + 1 = -3х + 1.
у (-х) ≠ у(х),
у (-х) ≠ - у(х),
у = 3х + 1 не является ни чётной, ни нечётной. у = 3х + 1 - функция общего вида.
2) у = -2х + 3.
1. D(y) = R - симметрична относительно 0.
2. у (-х) = -2•(-х) + 3 = 2х + 3.
у (-х) ≠ у(х),
у (-х) ≠ - у(х),
у = -2х + 3 не является ни чётной, ни нечётной. у = -2х + 3 - функция общего вида.
3) у = х^2 - 2.
1. D(y) = R - симметрична относительно 0.
2. у (-х) = (-х)^2 - 2 = х^2 - 2 = у(х),
по определению функция является чётной.
4) у = -2х^2 - 1.
1. D(y) = R - симметрична относительно 0.
2. у (-х) = -2•(-х)^2 - 1 = -2х^2 - 1 = у(х),
по определению функция является чётной.
5) у = 1/х.
D: x ≠ 0,
D = (- ∞; 0)∪(0; +∞ ) - симметрична относительно 0.
у(-х) = 1/(-х) = - 1/х = - у(х),
по определению функция является нечётной.
Пошаговое объяснение:
Всего - 4400 км
1 день - 4 ч. ? км
2 день - 6 ч. ? км
Скорость - одинаковая.
6+4= 10(ч)
4400÷10=440(км/ч)
440×4=1760(км) 1 день
440×6=2640(км) 2 день