ЖИЛИ - БЫЛИ В СТРАНЕ "МАТЕМАТИКА " ДВА ДРУГА КРУГ И КВАДРАТ! Однажды друг Квадрат решил зайти в гости к другу Кругу. Но Круга не было дома, он пошёл к другу треугольнику. Квадрат обиделся потому, что он не предупредил его, что пойдёт в гости к треугольнику. Он увидел около полянки плачущую дробь, она потеряла свой Знаменатель. Квадрат спросил её, почему она плачет? Она ему ответила, что потеряла свой Знаменатель. Квадрат сказал: "Давай я тебе найти твой Знаменатель". Дробь согласилась. И они пошли искать Знаменатель. Идут они через поле, а там речка течёт. Как её перейти? Видят: по речке лебеди плывут. Подошли поближе, и оказалось, это двойки к ребятам плывут. К тем, чьи дроби потеряли числители или знаменатели. А на берегу Знаменатели и Числители плачут. "Вот он!" - закричала дробь, увидев свой знаменатель. Одна двойка тут же утонула. Двоечник был А ваши Двойки все еще плывут? А ваши Знаменатели все еще сидят на берегу и плачут?
1. 52 % белые = 52:100=13/25 2. Известно, что количество шариков не более 70, значит необходимо найти целое натуральное число от 0 до 70, чтобы было кратно 25. Такие числа 25 и 50. 2. После того, как достали 3 шарика, количество белых и черных шаров стало одинаковым, значит число должно быть кратным 2 (ровно половина белых и черных шариков). 50-3=47 – не подходит т.к. оно не делится на 2 (нечетное число). 25-3=22, подходит 22:2=11 шариков черных и белых осталось, после того, как вытащили 3 шарика. 3) Найдем количество белых шариков, которые изначально были в ящике: 25*13/25= 13 белых шариков, тогда черных 25-13=12 черных шариков. 13-12=1 – количество белых шариков больше черных. (13-11=2 белых шарика достали и 12-11=1 черный шарик достали.) ответ: Первоначально белых шариков было на 1 больше, чем черных.
ответ: 1. 1)<
2)>
2. (204+488):4=204:4+488:4=51+122=173
(28+17)*5=(28*5)+(17*5)=140+85=225
Пошаговое объяснение:
1. 1) В первом примере первое частное из 3-х цифр, так как первая цифра не делится на делитель, а второе из 4-х
2) В первом примере первое частное из 4-х цифр, а второе из 3-х
2. Использование распределительного закона