Равнобедренной называется трапеция, в которой боковые стороны равны: АВ = ВС. Периметр трапеции – это сумма всех ее сторон: Р = АВ + ВС + СД + АД. Средняя линия трапеции – это отрезок, который соединяет средины боковых сторон. Она параллельна ее основаниям и равна их полусумме: m = (ВС + АД) / 2. ВС + АД = 2m. Так как боковые стороны АВ и СД равны длине средней линии: АВ = СД = m, то: АВ + СД = 2m. Таким образом: АВ + СД + ВС + АД = 2m + 2m = 4m; Р = 4m; m = Р / 4; m = 48 / 4 = 12 см; АВ = СД = 12 см. ответ: длина боковых сторон трапеции равна 12 см.
Дано :
Четырёхугольник ABCD - равнобедренная трапеция (AB║DC, AD = BC).
Окружность с центром О - вписанная в равнобедренную трапецию окружность.
ОМ - радиус окружности = 5 см.
AD = BC = 16 см.
Найти :
S(ABCD) = ?
Если в четырёхугольник можно вписать окружность, то суммы противоположных сторон равны.
Следовательно -
AD + BC = AB + DC.
Но так как -
AD = BC = 16 см.
Поэтому -
AD + BC = 16 см + 16 см = 32 см
AB + DC = 32 см.
Радиус вписанной в трапецию окружности равен половине высоты.
На чертёже НМ - высота ABCD, следовательно -
НМ = 2*ОМ
НМ = 2*5 см
НМ = 10 см.
Площадь трапеции равна произведению полусуммы оснований и высоты.
То есть -
Теперь в формулу подставляем известные нам численные значения и считаем -
ответ : 160 (ед²).