1. По теореме Бернулли, p = 0,8; q = 1-p = 0,2 1) Вероятность, что 4 мотора работает, а 2 не работает. P(4) = C(4, 6)*p^4*q^2 = 6*5/2*(0,8)^4*(0,2)^2 = 0,24576 2) Вероятность, что работают все 6 моторов P(6) = C(6, 6)*p^6*q^0 = 1*(0,8)^6*1 = 0,262144 3) Вероятность, что работает не больше 2 моторов, то есть 0 или 1. P(0) = C(0, 6)*p^0*q^6 = 1*1*(0,2)^6 = 0,000064 P(1) = C(1, 6)*p^1*q^5 = 6*(0,8)^1*(0,2)^5 = 0,001536 Общая вероятность равна сумме этих двух P = P(0) + P(1) = 0,000064 + 0,001536 = 0,0016
4. По той же формуле Бернулли, p = 0,4; q = 1-p = 0,6. Вероятность, что событие А появится меньше 2 раз из 6, то есть 0 или 1. P(0) = C(0, 6)*p^0*q^6 = 1*1*(0,6)^6 = 0,046656 P(1) = C(1, 6)*p^1*q^5 = 6*(0,4)^1*(0,6)^5 = 0,186624 Общая вероятность, что А наступит МЕНЬШЕ 2 раз P = P(0) + P(1) = 0,046656 + 0,186624 = 0,23328 Вероятность того, что А наступит НЕ МЕНЬШЕ 2 раз, и значит, в результате наступит событие В. Q = 1 - P = 1 - 0,23328 = 0,76672
Нужно расставить цифры на оставшиеся 4 разряда числа. 1) Пусть одним из разрядов является 1. Число расставить 1 на один из 4 разрядов равно 4. Теперь осталось поставить цифры на 3 оставшихся разряда, при этом нельзя брать 1. Число выбрать 3 различных цифры среди девяти цифр (исключили 1) с учетом порядка их следования равно A(9,3)=9*8*7. То есть количество пятизначных чисел, которые содержат две повторяющиеся 1 и начинаются на 1, равно 4*9*8*7 2) Пусть ни одним из оставшихся разрядов не является 1. Тогда надо выбрать из девяти цифр ту, которая будет повторяться в этом числе. Это можно сделать Затем эти две цифры надо поставить на какие-то два из четырех разрядов. Так как цифры одинаковые, то порядок их следования не важен. Значит, число здесь равно C(4,2)=4!/(2!*2!)=6. На оставшиеся два места нужно поставить два числа, причем выбирать их нужно из оставшихся восьми (нельзя брать 1 и ту цифру, которая повторяется в числе). Число сделать это равно A(8,2)=8*7. То есть количество пятизначных чисел, которые начинаются на 1 и содержат ровно две одинаковые цифры, отличные от 1, равно 9*6*8*7 Суммируем оба случая: 4*9*8*7+9*6*8*7=10*9*8*7=5040
1) Вероятность, что 4 мотора работает, а 2 не работает.
P(4) = C(4, 6)*p^4*q^2 = 6*5/2*(0,8)^4*(0,2)^2 = 0,24576
2) Вероятность, что работают все 6 моторов
P(6) = C(6, 6)*p^6*q^0 = 1*(0,8)^6*1 = 0,262144
3) Вероятность, что работает не больше 2 моторов, то есть 0 или 1.
P(0) = C(0, 6)*p^0*q^6 = 1*1*(0,2)^6 = 0,000064
P(1) = C(1, 6)*p^1*q^5 = 6*(0,8)^1*(0,2)^5 = 0,001536
Общая вероятность равна сумме этих двух
P = P(0) + P(1) = 0,000064 + 0,001536 = 0,0016
4. По той же формуле Бернулли, p = 0,4; q = 1-p = 0,6.
Вероятность, что событие А появится меньше 2 раз из 6, то есть 0 или 1.
P(0) = C(0, 6)*p^0*q^6 = 1*1*(0,6)^6 = 0,046656
P(1) = C(1, 6)*p^1*q^5 = 6*(0,4)^1*(0,6)^5 = 0,186624
Общая вероятность, что А наступит МЕНЬШЕ 2 раз
P = P(0) + P(1) = 0,046656 + 0,186624 = 0,23328
Вероятность того, что А наступит НЕ МЕНЬШЕ 2 раз, и значит, в результате наступит событие В.
Q = 1 - P = 1 - 0,23328 = 0,76672