В этом же интервале имеются 142 числа, кратных 7 : [999 : 7] = 142* .
Среди 142 чисел, кратных 7, имеются числа, которые делятся также и на 5, то есть кратные 35.
Всего таких чисел 28: [999 : 35]= 28* .
Эти 28 чисел уже учтены в числе 199, найденном ранее.
Поэтому количество чисел, меньших 1000, которые делятся либо на 5, либо на 7, равно 199 + 142 - 28 = 313.
В рассматриваемом интервале остается 999 - 313 = 686 чисел,
которые не делятся ни на 5, ни на 7.
* [N] - целая часть числа N . Например, [13,45] = 13.
В этом же интервале имеются 142 числа, кратных 7 : [999 : 7] = 142* .
Среди 142 чисел, кратных 7, имеются числа, которые делятся также и на 5, то есть кратные 35.
Всего таких чисел 28: [999 : 35]= 28* .
Эти 28 чисел уже учтены в числе 199, найденном ранее.
Поэтому количество чисел, меньших 1000, которые делятся либо на 5, либо на 7, равно 199 + 142 - 28 = 313.
В рассматриваемом интервале остается 999 - 313 = 686 чисел,
которые не делятся ни на 5, ни на 7.
* [N] - целая часть числа N . Например, [13,45] = 13.
ответ: E(y)=(-3; ∞)
Пошаговое объяснение:
Начнём с области определения: D(y)=R, где R - множество всех рациональных чисел. Проще говоря, D(y)=(-∞;∞)
Далее отметим, что функция возрастающая - при увеличении x увеличивается и значение y, значит при x минимальном y тоже будет принимать минимальное значение. Аналогично с максимальным.
Но это предел, а т.к. х не может быть равно минус бесконечности, то у тоже не будет равным -3.
\lim_{x \to \infty} y(x)= \lim_{x \to \infty} 4^x-3= \infty-3=\infty
Аналогично, у не будет равным бесконечности.
Тогда получаем, что E(y)=(-3; ∞).