Имеем несколько рядов полностью с плитками и последний неполный ряд. Чтобы в последнем ряду с 7 плитками плиток было больше на 5, нужно, чтобы ряд имел 6 плиток , а в последнем ряду с 8 плитками была 1 плитка. В нашем случае 6 - 1 = 5 Пишем уравнение для рядов с 7 плитками (7*а +6), где а - количество полных рядов, 6 - это плитки в последнем ряду. Пишем уравнение для рядов с 8 плитками (8*а +1), где а - количество полных рядов, 1 - это плитка в последнем ряду. Плиток одинаковое число в обоих случаях, поэтому выравниваем 7*а +6 = 8*а +1 , решаем а = 5 - подставляем в уравнения для рядов и находим количество плиток. 7*а +6 = 7*5+6 = 41 плитка 8*а +1 = 8*5 +1 = 41 плитка ответ: после строительства дома осталась 41 плитка.
lg 2x < lg (x+1)
ОДЗ:
x∈(0;+∞)
lg 2x < lg (x+1)
2x < x + 1
x < 1
С учетом ОДЗ:
x∈(0;1)
ответ: x∈(0;1)
№ 2log2(1-x) < 1
ОДЗ:
1-x>0
x<1
x∈(-∞;1)
log2(1-x) < 1
log2(1-x) < log2(2)
1-x<2
x>-1
С учетом ОДЗ:
x∈(-1;1)
ответ: x∈(-1;1)
№ 3(log3(x) - 2)*sqrt(x^2-4)<=0
ОДЗ:
x∈[2;+∞)
(log3(x) - 2)*sqrt(x^2-4)<=0
Т.к. sqrt(x^2-4) - всегда >= 0, то выражение будет < нуля в случае, когда log3(x) - 2 < 0 => Равносилен переход к совокупности:
log3(x) - 2 <= 0 или sqrt(x^2-4)=0
log3(x) <= 2 или (x-2)(x+2)=0
log3(x) <= log3(3^2) или x = ± 2
x <= 9 или x = ± 2
С учетом ОДЗ:
x∈[2;9]
ответ: x∈[2;9]