Поскольку числа 49 и 9 взаимно простые, тоесть не имеют общих делителей, кроме числа 1, то для того, чтобы некоторое число было кратным одновременно 49 и 9, необходимо, чтобы это число было кратным произведению чисел 49 и 9.
Всякое число х, кратное произведению чисел 49 и 9 можно записать в виде х = 49 * 9 * k, где k — некоторое целое число.
Перебирая значения k, начиная от k = 1, найдем все трехзначные числа, которые можно представить в виде 49 * 9 * k.
При k = 1 получаем х = 49 * 9 * 1 = 441.
При k = 2 получаем х = 49 * 9 * 2 = 882.
При k = 3 получаем х = 49 * 9 * 3 = 1323.
Следовательно, начиная с k = 3 число знаков в записи чисел вида 49 * 9 * k становится больше трех.
Следовательно, существует 2 трехзначные числа, кратные одновременно 49 и 9 : 441 и 882.
Их сумма равна: 441 + 882 = 1323.
ответ:1323.
ответ:
4*(2398+12290): 2=29376
1)2398+12290=14688
2)14688*4=58752
3)58752: 2=29376
6*(12468-9398)+37852=56272
1)12468-9398=3070
2)3070*6=18420
3)18420+37852=56272.
1-201411*3
1)201411*3=604233
2)1-604233=395767