М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ponaomarevp0btlh
ponaomarevp0btlh
09.02.2020 20:00 •  Математика

2cos² 105°-1
найдите значение выражение

👇
Открыть все ответы
Ответ:
hhhf1fodjcnj
hhhf1fodjcnj
09.02.2020

Решим данный пример, для этого по действия подсчитаем данные нам значения :

(-1,42-(-3,22)):(-0,8)+(-6)*(-0,7) ;

1) Подсчитаем разность чисел, а именно отнимем от (-1,42) число (-3,22), получим :

-1,42-(-3,22) = -1,42+3,22 = 1,8 ;

2) Выполним деление, а именно 1,8 разделим на (-0,8), получим :

1,8 : (-0,8) = -2,25 ;

3) Выполним умножение, а именно (-6) умножим на (-0,7), получим :

(-6)*(-0,7) = 4,2 ;

4) Подсчитаем сумму чисел, а именно прибавим число -2,25 и число 4,2, получим :

-2,25+4,2 = 1,95.

ответ: (-1,42-(-3,22)):(-0,8)+(-6)*(-0,7) =1,95.

Пошаговое объяснение:

4,8(58 оценок)
Ответ:
Lootfarm
Lootfarm
09.02.2020
ответ:

Сложное событие B = {событие А появится в 8 независимых испытаниях хотя бы 2 раза, то есть не менее двух раз}.

Сложное событие C = {событие А появится в 8 независимых испытаниях менее двух раз}.

Событие C состоит из двух несовместных событий:

Событие C0 = {событие А появится в 8 независимых испытаниях ровно 0 раз, то есть не появится ни разу}.

Событие C1 = {событие А появится в 8 независимых испытаниях ровно 1 раз}.

В каждом из 8 испытаний вероятность того, что он появится событие A , равна p=0,1.

Следовательно, также в каждом из 8 испытаний вероятность того, что событие A не появится, равна

q=1−p=1−0,1=0,9.

Вероятность события C0 по формуле Бернулли равна

P(C0)=P8(0)=C08p0q8=8!0!8!⋅(0,1)0⋅(0,9)8=0,430467.

Вероятность события C1 по формуле Бернулли равна

P(C1)=P8(1)=C18p4q1=8!1!7!⋅(0,1)1⋅(0,9)7=0,382638.

События B и C противоположны. Следовательно, искомая вероятность равна

P(B)=1−P(C)=1−[P(C0)+P(C1)]==1−0,430467−0,382638≈0,19.

ответ. P=1—[P8(0)+P8(1)]=0,19.

Пошаговое объяснение:

Сложное событие B = {событие А появится в 8 независимых испытаниях хотя бы 2 раза, то есть не менее двух раз}.

Сложное событие C = {событие А появится в 8 независимых испытаниях менее двух раз}.

Событие C состоит из двух несовместных событий:

Событие C0 = {событие А появится в 8 независимых испытаниях ровно 0 раз, то есть не появится ни разу}.

Событие C1 = {событие А появится в 8 независимых испытаниях ровно 1 раз}.

В каждом из 8 испытаний вероятность того, что он появится событие A , равна p=0,1.

Следовательно, также в каждом из 8 испытаний вероятность того, что событие A не появится, равна

q=1−p=1−0,1=0,9.

Вероятность события C0 по формуле Бернулли равна

P(C0)=P8(0)=C08p0q8=8!0!8!⋅(0,1)0⋅(0,9)8=0,430467.

Вероятность события C1 по формуле Бернулли равна

P(C1)=P8(1)=C18p4q1=8!1!7!⋅(0,1)1⋅(0,9)7=0,382638.

События B и C противоположны. Следовательно, искомая вероятность равна

P(B)=1−P(C)=1−[P(C0)+P(C1)]==1−0,430467−0,382638≈0,19.

ответ. P=1—[P8(0)+P8(1)]=0,19.

4,7(82 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ