М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Ннемо
Ннемо
30.11.2020 11:30 •  Математика

Переведите на язык : просеять муку и пряности. добавить гашеную соду, затем размягченное сливочное масло, смешать с сахаром и подогреть до растворения сахара и вылить в мучную смесь, добавить мед, затем ввести взбитое яйцо. 2. вымесить тесто до однородной массы. 3. раскатать тесто в пласт толщиной 5 мм, вырезать разные фигурки. 4. выпекать 20 минут при температуре 200°с. готовое печенье украсить белково-рисовальной массой. из корнета обвести контуры фигурок белой массой, затем ее подкрасить и украсить середину.

👇
Ответ:
aysi2005
aysi2005
30.11.2020
Mehl und Gewürze. Hinzufügen гашеную Soda, dann mit der Butter mischen und mit Zucker und rühren bis der Zucker aufgelöst hat, und Gießen Sie Sie in мучную Mischung, Honig, geben Sie dann in geschlagenem ei.
2. Вымесить der Teig glatt rühren.

3. Rollen Sie den Teig in einer Schicht der Dicke von 5 mm zu schneiden verschiedene Figuren.

4. Backen Sie für 20 Minuten bei einer Temperatur von 200°C. die Fertige Kekse dekorieren Protein-zeichnen sich die Masse. Der Kornett rund um die Konturen der Figuren der weißen Masse, dann verschönern und schmücken die Mitte.
4,5(68 оценок)
Открыть все ответы
Ответ:
abbasbayaliev
abbasbayaliev
30.11.2020

AC=10 см

Пошаговое объяснение:

Розв'язання:

Нехай дано ∆АВС, МК - серединний перпендикуляр до сторони АВ,

т. М належить сторон!і ВС, ВС = 16 см, Р∆АМС = 26 см. Знайдемо сторону АС.

Розглянемо ∆АМК i ∆BMK.

1) АК = KB (т. К - середина АВ);

2) ∟AКM = ∟BKM = 90° (МК ┴ АВ);

3) MК - спільна.

Отже, ∆АМК = ∆BMК за I ознакою, з цього випливає, що AM = MB.

Р∆АМС = АС + АМ + СМ (т.я. АМ = МВ, то Р∆АМС = АС + МВ + СМ).

26 = АС + MB + CM, MB + СМ = СВ = 16 см.

26 = АС + 16; АС = 26 - 16; АС = 10 см.

Biдповідь: AC = 10 см.

4,4(42 оценок)
Ответ:
291104
291104
30.11.2020

 

  Пример 1

Решить уравнение y′′=sinx+cosx.

Решение.

Данный пример относится к случаю 1. Введем функцию y′=p(x). Тогда y′′=p′. Следовательно, p′=sinx+cosx. Интегрируя, находим функцию p(x): dpdx=sinx+cosx,⇒dp=(sinx+cosx)dx,⇒∫dp=∫(sinx+cosx)dx,⇒p=−cosx+sinx+C1. Учитывая, что y′=p, проинтегрируем еще одно уравнение 1-го порядка: y′=−cosx+sinx+C1,⇒∫dy=∫(−cosx+sinx+C1)dx,⇒y=−sinx−cosx+C1x+C2. Последняя формула представлят собой общее решение исходного дифференциального уравнения.

  Пример 2

Решить уравнение y′′=14√y.

Решение.

Это уравнение относится к типу 2, где правая часть зависит лишь от переменной y. Введем параметр p=y′. Тогда уравнение можно записать в виде y′′=dpdyp=14√y. Мы получили уравнение 1-го порядка с разделяющимися переменными для функции p(y). Интегрируем его: dpdyp=14√y,⇒2pdp=dy2√y,⇒∫2pdp=∫dy2√y,⇒p2=√y+C1, где C1 − постоянная интегрирования.

Извлекая квадратный корень из обеих частей, находим функцию p(y): p=±√√y+C1. Теперь вспомним, что y′=p и решим еще одно уравнение 1-го порядка: y′=±√√y+C1,⇒dydx=±√√y+C1. Разделим переменные и проинтегрируем: dy√√y+C1=±dx,⇒∫dy√√y+C1=±∫dx. Чтобы вычислить левый интеграл, сделаем замену: √y+C1=z,⇒dz=dy2√y,⇒dy=2√ydz=2(z−C1)dz. Тогда левый интеграл будет равен ∫dy√√y+C1=∫2(z−C1)dz√z=2∫(z√z−C1√z)dz=2∫(z12−C1z−12)dz=2⎛⎝z3232−C1z1212⎞⎠=43z32−4C1z12=43√(√y+C1)3−4C1√√y+C1. В результате мы получаем следующее алгебраическое уравнение: 43√(√y+C1)3−4C1√√y+C1=C2±x, в котором C1,C2 являются постоянными интегрирования.

Последнее выражение представляет собой общее решение дифференциального уравнения в неявном виде.

  Пример 3

Решить уравнение y′′=√1−(y′)2.

Решение.

Данное уравнение не содержит функции y и независимой переменной x (случай 3). Поэтому полагаем y′=p(x). После этого уравнение принимает вид y′′=p′=√1−p2. Полученное уравнение первого порядка для функции p(x) является уравнением с разделяющимися переменными и легко интегрируется: dpdx=√1−p2,⇒dp√1−p2=dx,⇒∫dp√1−p2=∫dx,⇒arcsinp=x+C1,⇒p=sin(x+C1). Заменяя p на y′, получаем y′=sin(x+C1). Интегрируя еще раз, находим общее решение исходного дифференциального уравнения: dydx=sin(x+C1),⇒dy=sin(x+C1)dx,⇒∫dy=∫sin(x+C1)dx,⇒y=−cos(x+C1)+C2,⇒y=C2−cos(x+C1).

  Пример 4

Решить уравнение √xy′′=(y′)2.

Решение.

В это уравнение не входит явно переменная y, т. е. уравнение относится к типу 4 в нашей классификации. Введем новую переменную y′=p(x). Исходное уравнение преобразуется в уравнение первого порядка: √xp′=p2, которое решается разделением переменных: √xdpdx=p2,⇒dpp2=dx√x,⇒∫dpp2=∫dx√x,⇒−1p=2√x+C1,⇒p=y′=−12√x+C1. Интегрируя полученное уравнение еще раз, находим функцию y(x): dydx=−12√x+C1,⇒dy=−dx2√x+C1,⇒y=−∫dx2√x+C1. Для вычисления последнего интеграла сделаем замену: x=t2,dx=2tdt. В результате имеем y=−∫dx2√x+C1=−∫2tdt2t+C1=−∫2t+C1−C12t+C1dt=−∫(1−C12t+C1)dt=−t+C1∫dt2t+C1=−t+C12∫d(2t+C1)2t+C1=−t+C12ln|2t+C1|+C2. Возвращаясь обратно к переменной x, окончательно получаем y=−√x+C12ln∣∣2√x+C1∣∣+C2.

  Пример 5

Решить уравнение y′′=(2y+3)(y′)2.

Решение.

Данное уравнение не содержит явно независимой переменной x, т.е. относится к случаю 5. Пусть y′=p(y). Тогда уравнение запишется в виде p′=(2y+3)p2. Разделяем переменные и интегрируем: dpp2=(2y+3)dy,⇒∫dpp2=∫(2y+3)dy,⇒−1p=y2+3y+C1,⇒p=y′=−1y2+3y+C1. Интегрируя еще раз, получаем окончательное решение в неявном виде: (y2+3y+C1)dy=−dx,⇒∫(y2+3y+C1)dy=−∫dx,⇒y3+3y22+C1y+C2=−x,⇒2y3+3y2+C1y+C2+2x=0, где C1,C2 − постоянные интегрирования.

  Пример 6

Решить уравнение yy′′=(y′)2−3y2√x.

Решение.

Уравнение удовлетворяет условию однородности. Поэтому сделаем следующую замену переменной: y=e∫zdx. Производные будут равны y′=ze∫zdx, y′′=z′e∫zdx+z2e∫zdx=(z′+z2)e∫zdx. Тогда дифференциальное уравнение принимает вид: e∫zdx(z′+z2)e∫zdx=(ze∫zdx)2−3(e∫zdx)2√x,⇒e2∫zdx

(z′+z2)=e2∫zdx(z2−3√x),⇒z′+z2=z2

−3√x,⇒z′=−3√x. Функция z(x) легко находится: dzdx=−3√x,⇒dz=−3dx√x,⇒∫dz=−3∫dx√x,⇒z=−6√x+C1. Исходную функцию y(x) определим по формуле y(x)=C2e∫zdx. Вычисления приводят к следующему ответу: y(x)=C2e∫zdx=C2e∫(C1−6√x)dx=C2eC1x−6x3232=C2eC1x−4√x3. Заметим, что кроме полученного общего решения, дифференциальное уравнение содержит также особое решение y=0.

  Пример 7

Решить уравнение yy′′+(y′)2=2x+1.

Решение.

Можно заметить, что левая часть уравнения представляет собой производную от yy′. Поэтому, обозначая z=yy′, получаем следующее дифференциальное уравнение: (yy′)′=2x+1,⇒z′=2x+1. Последнее уравнение легко решается разделением переменных: dzdx=2x+1,⇒dz=(2x+1)dx,⇒∫dz=∫(2x+1)dx,⇒z=x2+x+C1. Теперь проинтегрируем еще одно уравнение для y(x): yy′=x2+x+C1,⇒∫ydy=∫(x2+x+C1)dx,⇒y22=x33+x22+C1x+C2,⇒3y2=2x3+3x2+C1x+C2, где C1,C2 − произвольные постоянные.

Пошаговое объяснение:

4,6(68 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ