ответ: Нет.
Из условия следует, что f(x) = (x – a)(x – b), где a ≠ b.
Пусть искомый многочлен f(x) существует.
Тогда, очевидно f(f(x)) = (x – t1)²(x – t2)(x – t3).
Заметим, что t1, t2, t3 — корни уравнений f(x) = a и f(x) = b, при этом корни этих уравнений не совпадают, поэтому можно считать, что уравнение f(x) = a имеет один корень x = t1.
Рассмотрим уравнение f(f(f(x))) = 0. Его решения, очевидно, являются решениями уравнений f(f(x)) = a и f(f(x)) = b. Но уравнение f(f(x)) = a равносильно уравнению f(x) = t1 и имеет не более двух корней, а уравнение f(f(x)) = b — не более четырех корней (как уравнение четвертой степени).
То есть уравнение f(f(f(x))) = 0 имеет не более 6 корней.
Объяснение:
могу только привести 3 примера,вам тогда будет легче указать факторы
1пример: В.А.Моцарт с рождения был лишён слуха. Однако это не помешало ему стать одним из величайших композиторов
2 пример: Диана Гурцкая слепа от рождения, тем не менее стала певицей, вышла замуж и родила ребёнка
3 пример: Оскару Писториусу в возрасте 11 месяцев удалили ноги ниже колена. Он является шестикратным чемпионом летних Параолимпийских игр
можно написать то,что начиная с детства ,упорство и тяга к прекрасному и что то в этом духе