Прочитай текст освященном дереве Аулие-а
напротив каждой части текста поставьте карандашом значки:
V— "я это знаю";
— это новая для меня информация;
я думал по-другому, это противоречит тому, что язы
это мне непонятно, нужны объяснения, уточнения°.
в мире существует три таких дерева. од
се одно растёт по дороге в
другое — в Китае, а третье — Ау.
итае, а третье — Аулие-агаш — в Казахстане, в
? — это мне непонят
е в Мекку,
яне, недалеко
леко от
Жаркента. И
По поверьям, дерево.
Любой человек, приходи
и приходит сюда за исцелением, а кто-то каёт силы.
и лу. Кто-то
с желания,
его верху-
Могучие Вет-
саатить ствол
они дерева
вились мо-
м, дерево Аулие-агаш исцеляет людей и Дr
риходя сюда, ощущает его невероятную
о чтобы загадать же
о тому дереву более семисот лет. Однако до сих пор на его в
ке появляется листва. Оно порама
я листва. Оно поражает своими размерами. Мо
Ви, как гигантские крылья, скло
не крылья, склоняются к земле. Чтобы обх
дерева Аулие-агаш, нужно не менее семерых взрослых. Корни
раскинулись на двадцать-тридцать метров. И из них уже появили
лодые деревья.
. Заполни таблицу
Какова основная мысль текста? Почему это дерево се
священным? Что обозначает слово аулие? Какой целебной
обладает Аулие-агаш? Подчеркни слова и словосочетания
обозначают огромные размеры дерева. Определи тип речи. Дока
этот текст — описание,
лево считается
nебной силой
тания, которые
речи. Докажи, что
Да
Объяснение:
Начертим равные отрезки BD и AC. Пусть точка их пересечения - О.
По условию, О делит оба отрезка пополам. А так как BD=AC, то
BO=OC=OA=OD
Начертим так же стороны четырехугольника ABCD.
Надо доказать, что это прямоугольник. BD и AC - его диагонали, они же пересекающиеся прямые. Тогда пусть ∠BOA=α, ∠BOA=∠COD=α (вертикальные). ∠BOA и ∠BOC - смежные ⇒ ∠BOA + ∠BOC = 180° ⇒ ∠BOC=180°-∠BOA=180°-α
Отметим также, что ΔBOA=ΔCOD (по 2 сторонам BO=OD, CO=OA, и углу между ними ∠BOA=∠COD). Аналогично ΔBOC=ΔDOA (BO=OD, CO=OA, ∠BOC=∠DOA).
Из этого следует (второе доказанное равенство треугольников), что ∠OBC=∠ODA, а это накрест лежащие углы при пересечении прямых BC и AD секущей BD, то есть BC║AD.
∠OBA=∠ODC (из первого доказанного равенства треугольников), а это накрест лежащие углы при пересечении прямых AB и CD секущей AC, то есть AB║CD.
Из равенств треугольников следует, что BC=AD (2-ое равенство), а AB=CD (1-ое равенство). В четырехугольнике ABCD противолежащие стороны равны и параллельны, то есть это параллелограмм. Осталось доказать, что хотя бы один угол в нем прямой (тогда найдется ещё один противополежащий равный ему угол, останутся два равных между собой угла, а так как их сумма 180° (сумма углов четырехугольника 360 и минус 2 угла по 90°), то они тоже будут по 90°).
Рассмотрим ∠ABC:
∠ABC=∠ABO+∠OBC;
из ΔOBA, который равнобедренный, углы при основании равны ∠ABO=∠BAO = (180°-α)/2=90°-α/2
из ΔOBC, который равнобедренный, углы при основании равны
∠OBC=∠OCB=(180°-(180°-α))/2=α/2
∠ABC=∠ABO+∠OBC=90°-α/2+α/2=90°, то есть в параллелограмме ABCD все 4 угла прямые, значит, это прямоугольник.Вот так!Начертим равные отрезки BD и AC. Пусть точка их пересечения - О.
По условию, О делит оба отрезка пополам. А так как BD=AC, то
BO=OC=OA=OD
Начертим так же стороны четырехугольника ABCD.
Надо доказать, что это прямоугольник. BD и AC - его диагонали, они же пересекающиеся прямые. Тогда пусть ∠BOA=α, ∠BOA=∠COD=α (вертикальные). ∠BOA и ∠BOC - смежные ⇒ ∠BOA + ∠BOC = 180° ⇒ ∠BOC=180°-∠BOA=180°-α
Отметим также, что ΔBOA=ΔCOD (по 2 сторонам BO=OD, CO=OA, и углу между ними ∠BOA=∠COD). Также ΔBOC=ΔDOA (BO=OD, CO=OA, ∠BOC=∠DOA).
Из этого следует (второе доказанное равенство треугольников), что ∠OBC=∠ODA, а это накрест лежащие углы при пересечении прямых BC и AD секущей BD, то есть BC║AD.
∠OBA=∠ODC (из первого доказанного равенства треугольников), а это накрест лежащие углы при пересечении прямых AB и CD секущей AC, то есть AB║CD.
Из равенств треугольников следует, что BC=AD (2-ое равенство), а AB=CD (1-ое равенство). В четырехугольнике ABCD противолежащие стороны равны и параллельны, то есть это параллелограмм. Осталось доказать, что хотя бы один угол в нем прямой (тогда найдется ещё один противополежащий равный ему угол, останутся два равных между собой угла, а так как их сумма 180° (сумма углов четырехугольника 360 и минус 2 угла по 90°), то они тоже будут по 90°).
Рассмотрим ∠ABC:
∠ABC=∠ABO+∠OBC;
из ΔOBA, который равнобедренный, углы при основании равны ∠ABO=∠BAO = (180°-α)/2=90°-α/2
из ΔOBC, который равнобедренный, углы при основании равны
∠OBC=∠OCB=(180°-(180°-α))/2=α/2
∠ABC=∠ABO+∠OBC=90°-α/2+α/2=90°, то есть в параллелограмме ABCD все 4 угла прямые, значит, это прямоугольник.