Для начала нужно разложить на множители знаменатель третьей дроби. Разложив, получим (х-5)*(х-4). Далее выберем общий множитель. Он будет таким: (х-3)(х-4)(х-5). Теперь сократим знаменатели дробей на данный множитель. У нас останется: х-5 + х-4 + х-3 ≤1. Перенесем числа -5, -4, -3 в другую часть неравенства, соответственно меняя знак на противоположный. Получится: х + х + х ≤ 1 + 5 + 4 + 3. Сложим числа и иксы:
3х ≤ 13. Разделим обе части на 3:
х ≤ четыре целых одна третья. Теперь осталось записать данное выражение в числовом промежутке: (-∞; четыре целых одна третья].
Решено.
получим: 2ху = 56
и складываем оба уравнения, получаем формулу квадрат суммы...
ху = 28
(х+у)^2 = 121
система
т.е. х+у = 11 или х+у = -11
ху = 28 ху = 28
теперь можно выразить х или у и подставить в другое уравнение
х = 11-у или х = -11-у
11у - у^2 - 28 = 0 -11у - у^2 - 28 = 0
y^2 - 11y +28 = 0 y^2 + 11y +28 = 0
по т.Виета
y1 = 4 (x1 = 7) y3 = -4 (x3 = -7)
y2 = 7 (x2 = 4) y4 = -7 (x4 = -4)