Пусть скорость второго-x, тогда скорость первого-x+10
Время первого автомобиля=300/x+10
Время второго автомобиля=300/x
Мы знаем, что второй автомобиль был в пути на 1 час больше, тогда составим уравнение:
300/x-300/x+10=1
(300x+3000-300x-x²-10x)/x²+10x=0
(-x²-10x+3000)/x²+10=0
(x²+10x-3000)/x²+10=0
Так ка на ноль делить нельзя, то это выражение равно нулю только при x²+10x-3000=0
Найдём дискриминант:
D=100+12000=√12100=110²
Найдём корни уравнения:
x1=(-10+110)/2=50
x2=(-10-110)/2<0( посторонний корень, так как скорость не может быть меньше нуля)
Скорость второго автомобиля мы обозначили за x, значит она равно 50 км/ч. Теперь найдём скорость первого:
50 км/ч+10 км/ч=60 км/ч
ответ: 50 км/ч и 60 км/ч
Объяснение:
Смотри, ученика всего 23. У нас спрашивают, что сколько учеников имеет ТОЧНО более трёх конфет.
Нам сказано, что 7 из них имеют по 3 или менее конфет, а восемнадцать, по 2 или больше. А всего учеников-то 23!
2 или больше, может быть те восемнадцать имеют 3 конфеты, значит они входят в те 7. (ведь 7 учеников получили 3 или меньше, а 18 2 или больше, они могли получить 3 конфеты, ведь 2>3)
23-7=16 (конфет, которые ещё входят в список возможных детей, у которых больше 3-ёх конфет)
Но, ведь 18+7=25! А не 23, значит те, кто входят в число 18-ть (эти 2 человека из тех семи, кто имеет меньше двух конфет) Значит 2 человека ещё выпадают, у них по 3 или менее конфет. (Ведь нам не сказано, что 18 имеют по 3 или более, нам сказано, что 18 имеют 2 и более, значит могут иметь и 3 конфетки, и входить в число тех, кто получил меньше трёх, а не больше)
Значит 16-2=14 (ещё минус 2 человека)
Это число тех, кто точно имеет больше трёх конфет.
ответ: 14