Разложим знаменатель на множители:
Сумма коэффициентов равна нулю, значит корни уравнения 1 и -1/3.
Интеграл примет вид:
Разложим дробь, стоящую под знаком интеграла, на составляющие:
Дроби равны, знаменатели равны, значит равны и числители:
Многочлены равны, когда равны коэффициенты при соответствующих степенях. Составим систему:
Выразим из второго уравнения А:
Подставляем в первое и находим В:
Находим А:
Сумма принимает вид:
Значит, интеграл примет вид:
Для второго слагаемого выполним приведение под знак дифференциала:
Интегрируем:
Упрощаем:
Применим свойство логарифмов:
Задание 1.
1. 5x⁴x²x=5x⁷, коэффициент 5, степень одночлена 7
2. 4b*0,25a*3m=3abm, коэффициент 3, степень одночлена 3
3. 6x*(-4yz)=-24xyz, коэффициент -24, степень одночлена 3
4. -2,4n²*5n³*x= -12n⁵x, коэффициент -12, степень одночлена 6
5. -15a²*0,2a⁵b³*(-3c)=9a⁷b³c, коэффициент 9, степень одночлена 11
6. y²*(-x³)*y¹¹=-x³y¹³, коэффициент -1, степень одночлена 16
Задание 2.
1. 3n³, если = -2
3*-2³= 3*-8= -24.
2. -4,5xy², если x=1/9, y= -4
-4,5*1/9*-4²= -4,5*1/9*16= -8
3. 7/12ab³, если a= -1/7, b= -2
7/12*-1/7*-2³= 7/12*-1/7*-8= 2/3
4. 0,4m²nk, если m=0,5, n=6, k= -10
0,4*0,5²*6*-10= 0,4*0,25*6*-10= -6
Объяснение:
-24^3= -13824
(-24)^3= -13824
Объяснение: те що ти поставив дужки у це завдання нічого не змінило