М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
lisafoxxxxxxxx
lisafoxxxxxxxx
22.11.2020 15:51 •  Алгебра

Запишите в виде многочленов произведения
2) (a + c)(n- m);
4)(c - d) (x - y);
6) (4-6)(5 + c);
8) (k - 6) (7 - d).

решить ​

👇
Ответ:
Dhcfyfhffdh
Dhcfyfhffdh
22.11.2020

2.an-am+cn-cm

4.cx-dx-cy+dy

6.20+4c-30-6c= -10-2c

8.7k-dk-42+6d

Объяснение:

4,8(7 оценок)
Открыть все ответы
Ответ:
alinanazarova20
alinanazarova20
22.11.2020
Не уследил 
2^n - оканчивается на 2,4,8,6 
3^n -оканчивается на 3,9,7,1

числа рода
2^n при делений на 11 остатки равны 2, 4, 8, 5, 10, 9, 7, 3, 6, 1, и.т.д  нас интересует  2^2012 она сравним по модулю то есть по равным остаткам  2^2012 можем протолкнуть в наш период  10*200 +2 =2002. то есть наше число повториться после первого цикла затем вторая цифра и будет нашим остатком то есть  2, 4, 8, 5, 10, 9, 7, 3, 6, 1, 

так же при делений рода 3^n  = 3, 9, 5, 4, 1  значит наш остаток равен  9 ,
и наше число можно записать 
a=11*k+4+11*z+9   то есть здесь k и z такие числа что это целая часть при делений числа а на 11  , видно что 4+9=13   не делиться на 11 нацело , значит остаток равен 2 
4,6(96 оценок)
Ответ:
пахан50
пахан50
22.11.2020

Раскладывать выражения на множители будем, используя группировки:

1). x – 3y + x2 – 9y2 = (x – 3y) + (x2 – 9y2).

По формуле а2 – b2 = (a – b)(а + b):

(x – 3y) + (x – 3y)(x + 3y).

Выносим выражение (x – 3y) за скобку:

(x – 3y)(1 + x + 3y).

2). 9m2 + 6mn + n2 – 25 = (9m2 + 2 ∙ 3mn + n2) – 25.

Упростим выражение в скобках по формуле квадрат суммы (а + b)2 = (а2 + 2ab + b2) и раскладываем как разность квадратов:

(3m + n)2 – 52 = (3m + n – 5)(3m + n + 5).

3). Выносим b3 за скобку и группируем:

ab5 – b5 – ab3 + b3 = b3(ab2 – b2 – a + 1) = b3((ab2 – b2) – (a – 1)) = b3[b2(a – 1) – (a – 1)].

Выносим общий множитель (a – 1) за скобку:

b3(a – 1)(b2 – 1).

4). 1– x2 + 10xy – 25y2 = 1– (x2 – 10xy + 25y2).

Выражение в скобке «сворачиваем» как  квадрат разности, к полученному выражению применяем формулу разности квадратов а2 – b2 = (a – b)(а + b):

1– (x – 5y)2 = (1– x + 5y)(1+ x – 5y).

ответ: 1). x – 3y + x2 – 9y2 = (x – 3y)(1 + x + 3y); 2). 9m2 + 6mn + n2 – 25 = (3m + n – 5)(3m + n + 5); 3). ab5 – b5 – ab3 + b3 = b3(a – 1)(b2 – 1); 4). 1– x2 + 10xy – 25y2 = (1– x + 5y)(1+ x – 5y).

Объяснение:

4,8(77 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ