Судя по условию задачи, машины выехали в одном направлении, и первая, более быстрая машина (ее скорость v₁ = 89 км/ч ) попутно догоняет вторую, медленную машину (ее скорость v₂=56 км/ч) и догонит ее в точке С:
89 км/ч→ 56 км\ч→ АB - - - - - С 99 км
Допустим, машины встретились в точке С. На это им потребовалось одинаковое время t, за которое они разные пути S₁ и S₂: S₁ = AB + BC = 99+BC S₂ = BC С другой стороны S₁= v₁t = 89t S₂ = v₂t = 56t Выразим неизвестное время t из первого и второго уравнений и приравняем полученные выражения (поскольку время одно и то же) : 99+BC = 89t, t = (99+BC) / 89 BC = 56t, t = BC / 56 (99+BC) / 89 = BC / 56 56(99+BC) = 89 BC 5544 + 56 BC = 89 BC 5544 = 33 BC BC = 5544 / 33 = 168 BC = 168 (км) t = BC/56 = 168/56 = 3 (ч)
ответ: на расстоянии 168 км от города B через 3 часа после выезда
Можно решить другим Представим, что вторая машина стоит в городе B. Тогда первая машина движется к ней со скоростью 89-56 = 33 км/ч Расстояние между машинами 99 км. И это расстояние будет пройдено первой машиной за время = путь / скорость = 99/33=3 ч. Зная время, можно перейти к первоначальным условиям задачи (обе машины движутся) и найти расстояние между точками B и C. Это удобнее сделать, исходя из движения второй машины, потому что она двигалась из точки B в точку C. длина BC = скорость второй машины * 3 часа = 56 км/ч * 3 ч = 168 км.
По условию Δ АВС - равнобедренный. По свойствам равнобедренного треугольника: 1)Боковые стороны равны: АВ=ВС = 24,2 см 2) Углы при основании равны: ∠А = ∠ С 3) Высота к основанию является биссектрисой и медианой: BD = 12,1 см - высота к основанию АС ∠BDA=∠BDC = 90° AD= DC ∠AВD = ∠CBD ΔВDA = ΔBDC - прямоугольные и равные треугольники
Катеты : ВD = 12,1 см , AD = DC Гипотенуза : AB=ВС= 24,2 см BD/AB = ВD/ВC = 12,1/24,2 = 1/2 ⇒ BD =¹/₂* АВ = ¹/₂ *ВС Катет , лежащий против угла в 30°, равен половине гипотенузы. Следовательно: ∠A = ∠С = 30° Сумма углов любого треугольника = 180°. ∠В = 180 - 2*30 = 180 - 60 = 120°
Icos2xI≤1⇒-1≤cos2x≤1 y∈[-1;1]
Isin2x+1I≤1⇒-1+1sin2x+1≤1+1 y∈[0;2]