Рассмотрим сначала случай (k - 1) = 0 <=> k = 1. Тогда уравнение примет вид 2^x = 3/4 и имеет один корень. Пусть k не равно 1. Сделаем замену переменной: у = 2^х. Тогда уравнение перепишется в виде (k - 1) * y^2 - 4y + (k + 2) = 0. Найдем четверть дискриминанта: D/4 = 4 - (k - 1)(k + 2) = -k^2 - k + 6. Если уравнение имеет один или более корней, то дискриминант должен быть неотрицательным. Имеем неравенство -k^2 - k + 6 >= 0, отсюда -3 <= k <= 2. Находим корни: y1 = (2 + √(-k^2 - k + 6))/(k - 1); y2 = (2 - √(-k^2 - k + 6))/(k - 1). Необходимо, чтобы хотя бы один из корней был положительным, иначе уравнение у = 2^x не имеет корней. Имеем два неравенства: 1. 2 + √(-k^2 - k + 6))/(k - 1) > 0; 2. 2 - √(-k^2 - k + 6))/(k - 1) > 0. Решение первого очевидно: 1 < k <= 2. Со вторым придется повозиться и разбить его на две системы: 1. 0 < √(-k^2 - k + 6) < 2 и k - 1 > 0. 2. √(-k^2 - k + 6) > 2 и k - 1 < 0. Решение первой системы: -3 <= k < -2 и 1 < k <= 2. Решение второй системы: -2 < k < 1. Решение неравенства - объединение двух промежутков. Значит ответ: -3 <= k < -2 и -2 < k <= 2.
1)Угол-это геометрическая фигура, которая состоит из точки и двух лучей, которые отходят от этой точки. Два угла называют вертикальными, если стороны одного угла являются продолжениями сторон другого. 2)Вертикальные углы равны. Доказательство: Свойство вертикальных углов Для лучшего понимания доказательства нарисуем небольшой рисунок, состоящий из двух пересекающихся прямых и двух пар вертикальных углов. Рассмотрим, например, вертикальные углы 1 и 3. Тогда угол 2 является смежным как с углом 1, так и с углом 3 и, значит, в соответствии со свойством 1.1, как угол 1, так и угол 3 дополняют угол 2 до 180 градусов, а это и означает, что угол 1 равен углу 3. Тем самым мы доказали Свойство углов 2. 3)Это такие прямые, угол между которыми 90 градусов.Перпендикулярными (или ортогональными) называются прямые, скалярное произведение которых равно нулю.
Число сочетаний из 15 элементов по 4: