4В в квадрате + 4В в 3 степени + В в 4 степени + 25В в квадрате -В в 4 степени -4В в 3 степени+ 12В = 29В в квадрате +12В
1)49^(x+1)=7^-x
7^(2x+2)=7^-x
2x+2=-x
3x=-2
x=-2/3
ответ -2/3
22)Найдите угловой коэффициент касательной, проведенной к графику функции f(x)=x - ln x в точке с абсциссой х=3)
найдем уравнение касательной
f(3)=3-ln3
f'(x)=x-1/x
f'(3)=3-1/3=2/3
теперь само уравнение
y=3-ln3+2/3(x-3)=3-ln3+2x/3-2 =2x/3-ln3+1
ответ коэффициент равен y=kx+b
здесь к=2/3
3)
54*3^(3-x)*3^(x-3)>0
2*3^3*3^(3-x)*3^(x-3)>0
2*3^(6-x)*3 ^(x-3)>0
2*3^(6-x+x-3)>0
отудого х любое число!
4)
sin(pi+x)-cos(pi/2-x)= V3
-sinx-sinx=V3
-2sinx=V3
sinx= -V3/2
x=-pi/3+2pi*k
Если ещё не изучено понятие производной, то решение может быть таким:
1. -2;
2. 3.
Объяснение:
1.Sn=6n-n^2
a1 = S1 = 6•1 - 1^2 = 5;
a1+a2 = S2 = 6•2 - 2^2 = 12 - 4 = 8;
a2 = S2 - S1 = 8 - 5 = 3.
Найдём d:
d = a2 - a3 = 3 - 5 = -2.
2. Sn=6n-n^2
Рассмотрим квадратичную функцию
у = 6х - х^2.
Графиком функции является парабола
у = - х^2 + 6х
Ветви параболы направлены вниз, своего наибольшего значения функция достигает в вершине параболы. Найдём её координаты:
х вершины = -b/(2a) = -6/(-2) = 3.
y вершины = - 3^2 +6•3 = -9+18 = 9.
Наибольшего значения 9 функция у = - х^2 + 6х достигает при х = 3.
Так как 3 - натуральное число, то и наша функция Sn=6n-n^2, определённая только для натуральных n, достигает наибольшего значения 9 при n = 3.
Необходимо взять три первых члена прогрессии, чтобы их сумма была наибольшей и равной 9.
ответить на второй вопрос можно и по-прежнему другому:
Sn=6n-n^2
- n^2 + 6n = - (n^2 - 6n) = - (n^2 -2•n•3 + 9 - 9) = - ((n-3)^2 -9) = - (n-3)^2 + 9.
Так как слагаемое 9 постоянно, a - (n-3)^2 неположительно для любого n, то наибольшей сумма будет тогда, когда наибольшим будет первое слагаемое, т.е. когда - (n-3)^2 = 0, при n = 3.
В этом случае Sn = - (n-3)^2 + 9 = 0 + 9 = 9.
файл