Разложение многочлена на множители вынесения общего множителя за скобкиВынести за скобки общий множитель: 4х4 – 8х3 + 2х2 -18х.1) Каждый член многочлена 4х4 – 8х3 + 2х2 -18х можно заменить произведением двух множителей, один из которых равен 2х: 2х×2х3 – 2х×4х2 + 2х×х -2х×9.2) Воспользуемся распределительным законом умножения и вынесем 2х - общий множитель за скобки: 2х(2х3 – 4х2+ ×х -9).Получим: 4х4 – 8х3 + 2х2 -18х= 2х(2х3 – 4х2 + ×х -9). Разложение многочлена на множители группировкиЕсли члены многочлена не имеют общего множителя, отличного от 1, то можно попытаться разложить такой многочлен группировки.Для этого надо объединить в группы те члены, которые имеют общие множители, и вынести за скобки общий член каждой группы. Если после таких преобразований окажется общий множитель у всех получившихся групп, то его вынести за скобки. Разложить многочлен на множители: 10ay – 5cy +2ax-cx.1) Объединим в первую группу 10ay и 2ax, а во вторую группу -5cy и -cx: (10ay и 2ax) + (-5cy и -cx) .2) В первой группе вынесем за скобки общий множитель 2а, во второй группе вынесем за скобки общий множитель -с: 2а(5у+х)-с(5у+х).3) Как видим, оба члена многочлена имеют общий множитель (5y+х), вынесем его за скобки: (5y+х)(2а-с).Получим: 10ay – 5cy +2ax-cx= (5y+х)(2а-с).ответ а)м^2-2м+1-н^2-5н+25 б)(3+с)^2
(х²+2х+1)(х²+2х)=12
Замена переменной
х²+2х=t
(t+1)·t=12
t²+t-12=0
D=1+48=49
t=(-1-7)/2=-4 или t=(-1+7)/2=3
x²+2x=-4 или х²+2х=3
х²+2х+4=0 x²+2x-3=0
D=4-16<0 D=4+12=16
уравнение не x=(-2-4)/2=-3 или х=(-2+4)/2=1
имеет корней
ответ. -3 ; 1
3) (х²-4x+1)(x²-4x+2)=12
Замена переменной
х²-4х+1=t
t·(t+1)=12
t²+t-12=0
D=1+48=49
t=(-1-7)/2=-4 или t=(-1+7)/2=3
x²-4x+1=-4 или х²-4х+1=3
х²-4х+5=0 x²-4x-2=0
D=16-20<0 D=16-4·(-2)=24
уравнение не x=(-2-2√6)/2=-1-√6 или х=(-2+2√6)/2=-1+√6
имеет корней
ответ. -1-√6 ; -1+√6