Объяснение:
Данная функция является квадратичной функцией (многочлен второй степени) и задаёт квадратичную параболу. Как известно, у такой функции может быть лишь один экстремум, находящийся в вершине параболы.
Упростим исходную функцию:
Для нахождения единственного экстремума воспользуемся производной:
По лемме Ферма, значение производной от экстремума нулевое. Таким образом,
точки экстремума будет решением
.
Для нахождения точки экстремума вычислим значение исходной функции от найденного
:
Получается, что координаты точки экстремума это .
Объяснение: найдем корни квадратного уравнения х²+3х-10=0
D=9-4·(-10)=49
x₁=(-3-7)/2=-5, x₂=(-3+7)/2=2
х²+3х-10=(x+5)(x-2)