Решение системы уравнений х=2
у= -1
Объяснение:
Решить систему методом алгебраического сложения
3х+6у=0
2х-у-5=0
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе нужно второе уравнение умножить на 6:
3х+6у=0
12х-6у=30
Складываем уравнения:
3х+12х+6у-6у=30
15х=30
х=30/15
х=2
Теперь значение х подставляем в любое из двух уравнений системы и вычисляем у:
3х+6у=0
6у= -3х
6у= -3*2
6у= -6
у= -1
Решение системы уравнений х=2
у= -1
переходи по ссылке там ответ
Ну или не переходи
Решите систему неравенств:
x²-3x+9>0
x²≤36
Решить первое неравенство:
x² - 3x + 9 > 0
Приравнять к нулю и решить квадратное уравнение:
x² - 3x + 9 = 0
D=b²-4ac =9 - 36 = -27
D < 0
Уравнение не имеет действительных корней.
Значит, неравенство выполняется всегда или не выполняется никогда.
Подставить в неравенство произвольное значение х:
х = 0;
0 - 0 + 6 > 0, выполняется.
Значит, неравенство верно при любом значении х.
Решение первого неравенства: х∈(-∞; +∞).
Решить второе неравенство:
x² ≤ 36
Приравнять к нулю и решить квадратное уравнение:
x² = 36 неполное квадратное уравнение
х = ±√36
х₁ = -6;
х₂ = 6.
Уравнение квадратичной функции, график - парабола, ветви направлены вверх, пересекают ось Ох в точках х= -6 и х= 6.
Решение второго неравенства: х∈[-6; 6].
Неравенство нестрогое, скобки квадратные.
Отметить на числовой оси интервалы решений двух неравенств и найти пересечение решений, это будет решение системы неравенств.
Пересечение решений: х∈[-6; 6].