1. y=2x-4 пересекается с y=-4x+2. Необходимо приравнять правые части. Во втором случае не пересекаются, т.к. левая часть не равна правой. Графиками являются прямые: в первом случае проходит через точку -4, находится в 1 и 3 четверти (k>0); во втором случае проходит через 2 и находится во 2 и 4 четверти (k<0). 3. Формула линейной функции имеет вид: y=5. 4. Т.к. они параллельны, то угловые коэффициенты равны (k=1.5). Искомая прямая проходит через А. Подставляем значения в формулу y=1.5x+c. Ищем с, который равен -2.5. Получаем, что y=1.5x-2.5. Графиком является прямая, проходящая через точку -2.5. 5. Т.к. прямые параллельны, то угловой коэффициент одинаков, то есть равен -0.4 (k= -0.4). Получаем, что y= -0.4x + 1. Для проверки принадлежности точки, необходимо доказать верность тождества: -19= -0.4*50+1 -19= -20+1 -19= -19, т.к. левая часть равна правой, то тождество оказалось верным, следовательно точка С(50; -19) принадлежит графику функции y= -0.4x+1.
Так как равенство (1) верно при любых значениях a и b, то оно является тождеством. Это тождество называется формулой куба суммы. Если в эту формулу вместо a и b подставить какие-нибудь выражения, например 5y 3 и 2z , то опять получится тождество.
(5y 3+2z) 3 = 125y 9+150y 6z +60y 3z 2+8z 3 . (2)
Поэтому формула куба суммы читается так:
куб суммы двух выражений равен кубу первого выражения плюс утроенное произведение квадрата первого выражения и второго, плюс утроенное произведение первого выражения на квадрат второго, плюс куб второго выражения.
При любых значениях a и b верно равенство
(a−b) 3 = a 3−3a 2b+3ab 2−b 3 . (3)
Доказательство.
(a−b) 3 = (a−b)(a 2−2ab+b 2) =
= a 3−2a 2b+ab 2 − a 2b+2ab 2−b 3 =
= a 3−3a 2b+3ab 2−b 3
Так как равенство (3) верно при любых значениях a и b, то оно является тождеством. Это тождество называется формулой куба разности. Если в эту формулу вместо a и b подставить какие-нибудь выражения, например 5y 3 и 2z , то опять получится тождество.
(5y 3−2z) 3 = 125y 9−150y 6z +60y 3z 2−8z 3 . (4)
Поэтому формула куба разности читается так:
куб разности двух выражений равен кубу первого выражения минус утроенное произведение квадрата первого выражения и второго, плюс утроенное произведение первого выражения и квадрата второго, минус куб второго выражения.