Пусть x ч — время мотоциклиста от А до С, тогда расстояние от А до С равно 90x км.
Автомобиль от А до С затратил на 1 час больше, т.е. (x+1) ч, тогда скорость автомобиля на участке от А до С равна 90x/(x+1) км/ч.
Расстояние от С до В равно (300-90x) км. Когда мотоциклист вернулся в А, автомобиль прибыл в В, то время, затраченное автомобилем от С до В равно x ч, следовательно скорость автомобиля на участке от С до В равна (300-90x)/x км/ч.
Так как скорость автомобиля на обоих участках постоянная, получим уравнение:
90x/(x+1) = (300-90x)/x
90x^2 = 300x + 300 — 90x^2 — 90x
6x^2 — 7x — 10 = 0
D = 289
x1 = 2 (ч) время мотоциклиста от А до С
x2 = -5/6 (не удовлетворяет условию задачи)
1) 90·2 = 180 (км) — расстояние от А до С.
ответ: 180
2) (0;4)
4) (-4;-2)
6) (-3;-1) ∪ (3;6)
Объяснение:
Метод интервалов.
2)x²-3x-4=0 x²+x=0
x₁+x₂=3; x₁x₂=-4 x(x+1)=0
x₁=4 ; x₂=-1 x₁=0; x₂=-1
+ || + | - | +
° ° ° ⇒
-1 0 4
(0;4)
4) x²+2x-8=0 x²-4=0
x₁=-4 ; x₂=2 x₁ ₂=±2
+ | - | + || +
° ° ° ⇒
-4 -2 2
(-4;-2)
6) x²-5x-6=0 -x²=-9
x₁=6 ; x₂=-1 x₁ ₂=±3
- | + | - | + | -
° ° ° ° ⇒
-3 -1 3 6
(-3;-1) ∪ (3;6)