В решении.
Объяснение:
В отеле Санкт-Петербурга есть 2-х местные и 3-х местные номера, в которые заселили 27 гостей из Москвы таким образом, что гости заняли 10 номеров. Ночь в двухместном номере на одного человека стоит 2000 рублей, ночь в трёхместном номере на одного человека стоит 1500 рублей. Сколько рублей суммарно потратили все гости из Москвы за одну ночь в отеле?
х - количество двухместных номеров.
у - количество трёхместных номеров.
1) По условию задачи система уравнений:
х + у = 10
2х + 3у = 27
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
х = 10 - у
2(10 - у) + 3у = 27
20 - 2у + 3у = 27
у = 7 - количество трёхместных номеров.
х = 10 - у
х = 3 - количество двухместных номеров.
2) Оплата:
3*2 = 6 (чел.) в двухместных номерах * 2000 = 12 000 (руб.);
7*3 = 21 (чел.) в трёхместных номерах * 1500 = 31 500 (руб.);
Суммарно: 12 000 + 31 500 = 43 500 (руб.).
В решении.
Объяснение:
В отеле Санкт-Петербурга есть 2-х местные и 3-х местные номера, в которые заселили 27 гостей из Москвы таким образом, что гости заняли 10 номеров. Ночь в двухместном номере на одного человека стоит 2000 рублей, ночь в трёхместном номере на одного человека стоит 1500 рублей. Сколько рублей суммарно потратили все гости из Москвы за одну ночь в отеле?
х - количество двухместных номеров.
у - количество трёхместных номеров.
1) По условию задачи система уравнений:
х + у = 10
2х + 3у = 27
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
х = 10 - у
2(10 - у) + 3у = 27
20 - 2у + 3у = 27
у = 7 - количество трёхместных номеров.
х = 10 - у
х = 3 - количество двухместных номеров.
2) Оплата:
3*2 = 6 (чел.) в двухместных номерах * 2000 = 12 000 (руб.);
7*3 = 21 (чел.) в трёхместных номерах * 1500 = 31 500 (руб.);
Суммарно: 12 000 + 31 500 = 43 500 (руб.).
1) |5x-12|<3
2) 1,2
Объяснение:
Разность чисел: 5x-12
Модуль разности чисел: |5x-12|
Приведенное условие "Не больше чем число 3" пишется в виде следующего неравенства
|5x-12|≤3
2) |5x-12|≤3
-3≤5x-12≤3
-3+12≤5x≤3+12
9≤5x≤15
9/5≤x≤15/5
1,8 ≤ x ≤ 3
Длину промежутка, являющийся решением этого неравенства
3-1,8=1,2