Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К. На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10! Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы. Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами. Для М и Т это будет 2! и 2!, для А – 3! С учётом порядка позиции их будет: Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой Перестановки с повторением. Всего у нас Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
Решение При одном включённом эскалаторе за минуту заполняется 1/12 зала. При двух включённых эскалаторах за минуту заполняется 1/30 зала. Далее можно рассуждать по-разному. Первый . Разница 1/12 – 1/30 = 1/20 показывает, какую часть зала опустошает за минуту один эскалатор. Когда включат третий эскалатор, толпа начнёт убывать со скоростью 1/20 – 1/30 = 1/60 зала в минуту. Следовательно, зал освободится через час. Второй . Скорость v2 заполнения зала при двух включенных эскалаторах равна среднему арифметическому скоростей v1 и v3 заполнения при одном и трёх включенных эскалаторах. Поэтому v3 = 2v2 – v1 = 2·1/30 – 1/12 = – 1/60, то есть освобождается 1/60 зала в минуту.
если что знак => означает следовательно равно, это чтоб на каждой строчке не писать и экономить место