Разобьём квадрат со стороной 5 см на 25 квадратов со стороной 1 см. Будем рассматривать их как контейнеры. Точка попадает в контейнер, если она лежит либо на его сторонах, либо во внутренней области. Тогда, по принципу Дирихле, хотя бы в одном из контейнеров окажется две точки. [Некоторые точки могут попасть сразу в четыре контейнера (если такая точка упадёт на вершину квадрата, которая не лежит на стороне исходного квадрата), но для нас важно, что любая точка с необходимостью попадает хотя бы в один.] Итак, в одном из контейнеров содержится две точки. Вспомним, что наш контейнер не что иное, как квадрат со стороной в 1 см. Покажем, что расстояние между двумя точками квадрата со стороной в 1 см не превышает √2. Рассмотрим квадрат ABCD (рис.1) со стороной равной 1 см и две произвольные точки, которые лежат на квадрате.
1) 12 шаг/мин * 80 см = 960 см/мин = 9,6 (м/мин) - скорость первого судьи; 2) 10 шаг/мин * 80 см = 800 см/мин = (8 м/мин) - скорость второго судьи; 3) 9,6 м/мин + 8 м/мин = 17,6 (м/мин) - скорость сближения; 4) 17,6 м/мин * 20 мин = 352 (м) - расстояние между пунктами. ответ: 352 м.
1) 12 шаг/мин * 80 см = 960 (см/мин) - скорость первого судьи; 2) 960 см * 20 мин = 19 200 см = 192 (м первый судья до встречи; 3) 10 шаг/мин * 80 см = 800 см/мин - скорость второго судьи; 4) 800 см/мин * 20 мин = 16 000 см = 160 (м второй судья до встречи; 5) 192 м + 160 м = 352 (м) - расстояние между пунктами. ответ: 352 м.